Properties

Base field \(\Q(\sqrt{-7}) \)
Label 2.0.7.1-88.4-a
Conductor 88.4
Rank \( 0 \)

Related objects

Learn more about

Base field \(\Q(\sqrt{-7}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 2 \); class number \(1\).

Elliptic curves in class 88.4-a over \(\Q(\sqrt{-7}) \)

Isogeny class 88.4-a contains 4 curves linked by isogenies of degrees dividing 6.

Curve label Weierstrass Coefficients
88.4-a1 \( \bigl[a\) , \( -a\) , \( 0\) , \( -2 a - 1\) , \( -a\bigr] \)
88.4-a2 \( \bigl[a\) , \( -a\) , \( 0\) , \( 3 a - 31\) , \( -2 a + 74\bigr] \)
88.4-a3 \( \bigl[a\) , \( 0\) , \( a\) , \( 4 a + 10\) , \( 21 a - 19\bigr] \)
88.4-a4 \( \bigl[a\) , \( 0\) , \( a\) , \( -a\) , \( -a + 1\bigr] \)

Rank

Rank: \( 0 \)

Isogeny matrix

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph