Learn more

Refine search


Results (22 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
8064.4-a1 8064.4-a \(\Q(\sqrt{-7}) \) \( 2^{7} \cdot 3^{2} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.161678695$ 1.634075498 \( -\frac{30704}{1029} a + \frac{1824160}{1029} \) \( \bigl[0\) , \( a\) , \( 0\) , \( 8 a - 4\) , \( a - 7\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(8a-4\right){x}+a-7$
8064.4-a2 8064.4-a \(\Q(\sqrt{-7}) \) \( 2^{7} \cdot 3^{2} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.161678695$ 1.634075498 \( \frac{4565872}{147} a + \frac{68482448}{441} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 2 a + 24\) , \( 29 a - 18\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(2a+24\right){x}+29a-18$
8064.4-b1 8064.4-b \(\Q(\sqrt{-7}) \) \( 2^{7} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.971756568$ $1.254911473$ 3.687326055 \( \frac{6193144}{21} a - \frac{1390346492}{21} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -128 a + 64\) , \( 412 a - 804\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(-128a+64\right){x}+412a-804$
8064.4-b2 8064.4-b \(\Q(\sqrt{-7}) \) \( 2^{7} \cdot 3^{2} \cdot 7 \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.971756568$ $2.509822947$ 3.687326055 \( -\frac{17252}{63} a - \frac{89876}{567} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -2 a + 4\) , \( a - 6\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-2a+4\right){x}+a-6$
8064.4-b3 8064.4-b \(\Q(\sqrt{-7}) \) \( 2^{7} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.485878284$ $2.509822947$ 3.687326055 \( \frac{42880}{7} a - \frac{20656}{9} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -8 a + 4\) , \( 4 a - 12\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(-8a+4\right){x}+4a-12$
8064.4-b4 8064.4-b \(\Q(\sqrt{-7}) \) \( 2^{7} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.971756568$ $2.509822947$ 3.687326055 \( -\frac{546100}{147} a + \frac{447416}{147} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -4 a + 9\) , \( -2 a - 16\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-4a+9\right){x}-2a-16$
8064.4-c1 8064.4-c \(\Q(\sqrt{-7}) \) \( 2^{7} \cdot 3^{2} \cdot 7 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $1.402443500$ 2.120295274 \( -\frac{863944673}{63} a - \frac{1616364293}{63} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 93 a - 78\) , \( 414 a\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(93a-78\right){x}+414a$
8064.4-c2 8064.4-c \(\Q(\sqrt{-7}) \) \( 2^{7} \cdot 3^{2} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.701221750$ 2.120295274 \( \frac{70011793}{7203} a - \frac{221078161}{7203} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 128 a - 16\) , \( 220 a + 728\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(128a-16\right){x}+220a+728$
8064.4-c3 8064.4-c \(\Q(\sqrt{-7}) \) \( 2^{7} \cdot 3^{2} \cdot 7 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.402443500$ 2.120295274 \( \frac{172799}{441} a - \frac{2545}{9} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 8 a - 16\) , \( -20 a + 56\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(8a-16\right){x}-20a+56$
8064.4-c4 8064.4-c \(\Q(\sqrt{-7}) \) \( 2^{7} \cdot 3^{2} \cdot 7 \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $1.402443500$ 2.120295274 \( -\frac{839201}{189} a + \frac{2555873}{567} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -3 a - 30\) , \( 18 a + 72\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-3a-30\right){x}+18a+72$
8064.4-c5 8064.4-c \(\Q(\sqrt{-7}) \) \( 2^{7} \cdot 3^{2} \cdot 7 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.701221750$ 2.120295274 \( \frac{78717967}{15309} a - \frac{9092939}{45927} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -63 a - 70\) , \( -330 a - 48\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-63a-70\right){x}-330a-48$
8064.4-c6 8064.4-c \(\Q(\sqrt{-7}) \) \( 2^{7} \cdot 3^{2} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.402443500$ 2.120295274 \( -\frac{13784383}{21} a + \frac{8018911}{21} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -47 a - 22\) , \( -238 a + 84\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-47a-22\right){x}-238a+84$
8064.4-d1 8064.4-d \(\Q(\sqrt{-7}) \) \( 2^{7} \cdot 3^{2} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.072656234$ 2.322709788 \( \frac{1116160}{189} a - \frac{5451776}{189} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -a + 9\) , \( -5 a\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-a+9\right){x}-5a$
8064.4-d2 8064.4-d \(\Q(\sqrt{-7}) \) \( 2^{7} \cdot 3^{2} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.536328117$ 2.322709788 \( -\frac{49568}{63} a + \frac{2715344}{5103} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -11 a + 14\) , \( -8 a + 40\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-11a+14\right){x}-8a+40$
8064.4-e1 8064.4-e \(\Q(\sqrt{-7}) \) \( 2^{7} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.901291163$ $1.254911473$ 3.607220506 \( -\frac{6193144}{21} a - \frac{1384153348}{21} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 128 a - 64\) , \( 412 a + 392\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(128a-64\right){x}+412a+392$
8064.4-e2 8064.4-e \(\Q(\sqrt{-7}) \) \( 2^{7} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.475322790$ $2.509822947$ 3.607220506 \( \frac{17252}{63} a - \frac{245144}{567} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 4 a + 1\) , \( 4 a + 6\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(4a+1\right){x}+4a+6$
8064.4-e3 8064.4-e \(\Q(\sqrt{-7}) \) \( 2^{7} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.950645581$ $2.509822947$ 3.607220506 \( -\frac{42880}{7} a + \frac{241328}{63} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 8 a - 4\) , \( 4 a + 8\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(8a-4\right){x}+4a+8$
8064.4-e4 8064.4-e \(\Q(\sqrt{-7}) \) \( 2^{7} \cdot 3^{2} \cdot 7 \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.475322790$ $2.509822947$ 3.607220506 \( \frac{546100}{147} a - \frac{98684}{147} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 6 a + 4\) , \( -7 a + 14\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(6a+4\right){x}-7a+14$
8064.4-f1 8064.4-f \(\Q(\sqrt{-7}) \) \( 2^{7} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.545461846$ $1.097685804$ 3.620873802 \( \frac{48284377}{189} a - \frac{108521789}{567} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 64 a + 40\) , \( -68 a + 492\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(64a+40\right){x}-68a+492$
8064.4-f2 8064.4-f \(\Q(\sqrt{-7}) \) \( 2^{7} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.545461846$ $2.195371609$ 3.620873802 \( -\frac{219127}{7} a - \frac{566221}{21} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -7 a - 14\) , \( -10 a - 16\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-7a-14\right){x}-10a-16$
8064.4-f3 8064.4-f \(\Q(\sqrt{-7}) \) \( 2^{7} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.272730923$ $2.195371609$ 3.620873802 \( -\frac{4009}{21} a + \frac{2191}{9} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 4 a\) , \( -4 a + 12\bigr] \) ${y}^2={x}^{3}+{x}^{2}+4a{x}-4a+12$
8064.4-f4 8064.4-f \(\Q(\sqrt{-7}) \) \( 2^{7} \cdot 3^{2} \cdot 7 \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.545461846$ $2.195371609$ 3.620873802 \( \frac{166231}{49} a + \frac{660025}{147} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -2 a - 12\) , \( a + 10\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-2a-12\right){x}+a+10$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.