Properties

Label 2.0.7.1-6300.2-c1
Base field \(\Q(\sqrt{-7}) \)
Conductor norm \( 6300 \)
CM no
Base change no
Q-curve yes
Torsion order \( 8 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-7}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, -1, 1]))
 
gp: K = nfinit(Polrev([2, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(433a+75\right){x}+369a+6433\)
sage: E = EllipticCurve([K([1,0]),K([1,-1]),K([1,1]),K([75,433]),K([6433,369])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([1,-1]),Polrev([1,1]),Polrev([75,433]),Polrev([6433,369])], K);
 
magma: E := EllipticCurve([K![1,0],K![1,-1],K![1,1],K![75,433],K![6433,369]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-60a+30)\) = \((a)\cdot(-a+1)\cdot(-2a+1)\cdot(3)\cdot(5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 6300 \) = \(2\cdot2\cdot7\cdot9\cdot25\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((68924160a-119738880)\) = \((a)^{32}\cdot(-a+1)^{8}\cdot(-2a+1)\cdot(3)^{2}\cdot(5)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 15585577323724800 \) = \(2^{32}\cdot2^{8}\cdot7\cdot9^{2}\cdot25\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{200726412597083567}{1352914698240} a - \frac{79495219038614219}{1352914698240} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(11 a - 25 : -60 a - 6 : 1\right)$
Height \(1.2420901473321770057570871967422461645\)
Torsion structure: \(\Z/8\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-13 a - 13 : 72 a - 198 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.2420901473321770057570871967422461645 \)
Period: \( 0.44207748291667939517513770716236571367 \)
Tamagawa product: \( 512 \)  =  \(2^{5}\cdot2^{3}\cdot1\cdot2\cdot1\)
Torsion order: \(8\)
Leading coefficient: \( 6.6412903869459543008370323249614582323 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a)\) \(2\) \(32\) \(I_{32}\) Split multiplicative \(-1\) \(1\) \(32\) \(32\)
\((-a+1)\) \(2\) \(8\) \(I_{8}\) Split multiplicative \(-1\) \(1\) \(8\) \(8\)
\((-2a+1)\) \(7\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((3)\) \(9\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)
\((5)\) \(25\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4, 8, 16 and 32.
Its isogeny class 6300.2-c consists of curves linked by isogenies of degrees dividing 32.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.