Properties

Label 2.0.7.1-5324.7-c3
Base field \(\Q(\sqrt{-7}) \)
Conductor norm \( 5324 \)
CM no
Base change no
Q-curve yes
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-7}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, -1, 1]))
 
gp: K = nfinit(Polrev([2, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(537a+109\right){x}+192a+7744\)
sage: E = EllipticCurve([K([1,0]),K([0,0]),K([1,1]),K([109,537]),K([7744,192])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([0,0]),Polrev([1,1]),Polrev([109,537]),Polrev([7744,192])], K);
 
magma: E := EllipticCurve([K![1,0],K![0,0],K![1,1],K![109,537],K![7744,192]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((44a+22)\) = \((a)\cdot(-a+1)\cdot(-2a+3)\cdot(2a+1)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 5324 \) = \(2\cdot2\cdot11\cdot11^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((1630421760a+6113144576)\) = \((a)^{8}\cdot(-a+1)^{16}\cdot(-2a+3)^{4}\cdot(2a+1)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 52654090776777588736 \) = \(2^{8}\cdot2^{16}\cdot11^{4}\cdot11^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{1133731711875}{959512576} a + \frac{4028870229625}{479756288} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(38 a - 70 : -201 a - 389 : 1\right)$
Height \(0.49123869702337269793628377890273286478\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(\frac{53}{4} a - \frac{71}{4} : -\frac{57}{8} a + \frac{67}{8} : 1\right)$ $\left(\frac{31}{4} a - \frac{19}{2} : -\frac{35}{8} a + \frac{17}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.49123869702337269793628377890273286478 \)
Period: \( 0.28845449489942977783298464810349974858 \)
Tamagawa product: \( 256 \)  =  \(2\cdot2^{4}\cdot2\cdot2^{2}\)
Torsion order: \(4\)
Leading coefficient: \( 3.4276844601643616795688378653162207061 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a)\) \(2\) \(2\) \(I_{8}\) Non-split multiplicative \(1\) \(1\) \(8\) \(8\)
\((-a+1)\) \(2\) \(16\) \(I_{16}\) Split multiplicative \(-1\) \(1\) \(16\) \(16\)
\((-2a+3)\) \(11\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)
\((2a+1)\) \(11\) \(4\) \(I_{2}^{*}\) Additive \(-1\) \(2\) \(8\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 5324.7-c consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.