Properties

Label 2.0.7.1-44800.5-n3
Base field \(\Q(\sqrt{-7}) \)
Conductor \((-160a+80)\)
Conductor norm \( 44800 \)
CM no
Base change yes: 560.d4,3920.t4
Q-curve yes
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands for: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{-7}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, -1, 1]))
 
gp: K = nfinit(Pol(Vecrev([2, -1, 1])));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -1, 1]);
 

Weierstrass equation

\({y}^2={x}^{3}+37{x}+138\)
sage: E = EllipticCurve([K([0,0]),K([0,0]),K([0,0]),K([37,0]),K([138,0])])
 
gp: E = ellinit([Pol(Vecrev([0,0])),Pol(Vecrev([0,0])),Pol(Vecrev([0,0])),Pol(Vecrev([37,0])),Pol(Vecrev([138,0]))], K);
 
magma: E := EllipticCurve([K![0,0],K![0,0],K![0,0],K![37,0],K![138,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-160a+80)\) = \((a)^{4}\cdot(-a+1)^{4}\cdot(-2a+1)\cdot(5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 44800 \) = \(2^{4}\cdot2^{4}\cdot7\cdot25\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-11468800)\) = \((a)^{16}\cdot(-a+1)^{16}\cdot(-2a+1)^{2}\cdot(5)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 131533373440000 \) = \(2^{16}\cdot2^{16}\cdot7^{2}\cdot25^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{1367631}{2800} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(6 a - 5 : -2 a + 22 : 1\right)$
Height \(0.613941328200021\)
Torsion structure: \(\Z/2\Z\times\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(-3 : 0 : 1\right)$ $\left(-5 a + 4 : 0 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.613941328200021 \)
Period: \( 0.924987233460507 \)
Tamagawa product: \( 64 \)  =  \(2^{2}\cdot2^{2}\cdot2\cdot2\)
Torsion order: \(4\)
Leading coefficient: \( 3.43426315725979 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a)\) \(2\) \(4\) \(I_8^{*}\) Additive \(-1\) \(4\) \(16\) \(4\)
\((-a+1)\) \(2\) \(4\) \(I_8^{*}\) Additive \(-1\) \(4\) \(16\) \(4\)
\((-2a+1)\) \(7\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)
\((5)\) \(25\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 44800.5-n consists of curves linked by isogenies of degrees dividing 8.

Base change

This curve is the base change of elliptic curves 560.d4, 3920.t4, defined over \(\Q\), so it is also a \(\Q\)-curve.