Properties

Label 2.0.7.1-42592.18-l1
Base field \(\Q(\sqrt{-7}) \)
Conductor norm \( 42592 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-7}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, -1, 1]))
 
gp: K = nfinit(Polrev([2, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(18a-3\right){x}+13a-33\)
sage: E = EllipticCurve([K([1,1]),K([1,0]),K([1,1]),K([-3,18]),K([-33,13])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([1,0]),Polrev([1,1]),Polrev([-3,18]),Polrev([-33,13])], K);
 
magma: E := EllipticCurve([K![1,1],K![1,0],K![1,1],K![-3,18],K![-33,13]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((154a-110)\) = \((a)\cdot(-a+1)^{4}\cdot(-2a+3)^{2}\cdot(2a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 42592 \) = \(2\cdot2^{4}\cdot11^{2}\cdot11\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((711216a+211904)\) = \((a)^{5}\cdot(-a+1)^{4}\cdot(-2a+3)^{8}\cdot(2a+1)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1207269217792 \) = \(2^{5}\cdot2^{4}\cdot11^{8}\cdot11\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{82377}{352} a + \frac{639603}{352} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1.3495193960117461421163639795640472274 \)
Tamagawa product: \( 5 \)  =  \(5\cdot1\cdot1\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 5.1007038732931025451219211894507236285 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a)\) \(2\) \(5\) \(I_{5}\) Split multiplicative \(-1\) \(1\) \(5\) \(5\)
\((-a+1)\) \(2\) \(1\) \(II\) Additive \(-1\) \(4\) \(4\) \(0\)
\((-2a+3)\) \(11\) \(1\) \(IV^{*}\) Additive \(-1\) \(2\) \(8\) \(0\)
\((2a+1)\) \(11\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 42592.18-l consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.