Properties

Label 2.0.7.1-42592.18-j1
Base field \(\Q(\sqrt{-7}) \)
Conductor norm \( 42592 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-7}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, -1, 1]))
 
gp: K = nfinit(Polrev([2, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(-69a+58\right){x}-102a+470\)
sage: E = EllipticCurve([K([1,1]),K([0,1]),K([0,0]),K([58,-69]),K([470,-102])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([0,1]),Polrev([0,0]),Polrev([58,-69]),Polrev([470,-102])], K);
 
magma: E := EllipticCurve([K![1,1],K![0,1],K![0,0],K![58,-69],K![470,-102]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((154a-110)\) = \((a)\cdot(-a+1)^{4}\cdot(-2a+3)^{2}\cdot(2a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 42592 \) = \(2\cdot2^{4}\cdot11^{2}\cdot11\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((686554a-3225134)\) = \((a)\cdot(-a+1)^{4}\cdot(-2a+3)^{2}\cdot(2a+1)^{9}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 9129973459552 \) = \(2\cdot2^{4}\cdot11^{2}\cdot11^{9}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{51319633286103}{4715895382} a - \frac{160385954000237}{4715895382} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{15}{4} a + \frac{21}{4} : \frac{127}{8} a - \frac{245}{8} : 1\right)$
Height \(0.68861184970013030366558804903872251824\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.68861184970013030366558804903872251824 \)
Period: \( 0.96081047141859112785106388977595123571 \)
Tamagawa product: \( 9 \)  =  \(1\cdot1\cdot1\cdot3^{2}\)
Torsion order: \(1\)
Leading coefficient: \( 9.0025532762824690015027471785421670731 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a)\) \(2\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((-a+1)\) \(2\) \(1\) \(II\) Additive \(-1\) \(4\) \(4\) \(0\)
\((-2a+3)\) \(11\) \(1\) \(II\) Additive \(-1\) \(2\) \(2\) \(0\)
\((2a+1)\) \(11\) \(9\) \(I_{9}\) Split multiplicative \(-1\) \(1\) \(9\) \(9\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 42592.18-j consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.