Properties

Label 2.0.7.1-42592.18-g1
Base field \(\Q(\sqrt{-7}) \)
Conductor norm \( 42592 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 2 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-7}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, -1, 1]))
 
gp: K = nfinit(Polrev([2, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-30a-22\right){x}-9a-81\)
sage: E = EllipticCurve([K([1,1]),K([-1,0]),K([1,1]),K([-22,-30]),K([-81,-9])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([-1,0]),Polrev([1,1]),Polrev([-22,-30]),Polrev([-81,-9])], K);
 
magma: E := EllipticCurve([K![1,1],K![-1,0],K![1,1],K![-22,-30],K![-81,-9]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((154a-110)\) = \((a)\cdot(-a+1)^{4}\cdot(-2a+3)^{2}\cdot(2a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 42592 \) = \(2\cdot2^{4}\cdot11^{2}\cdot11\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((4088832a-13629440)\) = \((a)^{13}\cdot(-a+1)^{10}\cdot(-2a+3)^{4}\cdot(2a+1)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 163470238547968 \) = \(2^{13}\cdot2^{10}\cdot11^{4}\cdot11^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{3287573457}{10903552} a + \frac{14322326347}{10903552} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(2\)
Generators $\left(-a + 7 : 9 a - 21 : 1\right)$ $\left(-9 a + 3 : 29 a + 11 : 1\right)$
Heights \(0.16022243033527536880515206282131272112\) \(0.072920469427481665964055773519310193922\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 2 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(2\)
Regulator: \( 0.0073804284219367960820888724170918803936 \)
Period: \( 0.90042207243989892816217898660190982025 \)
Tamagawa product: \( 468 \)  =  \(13\cdot2^{2}\cdot3\cdot3\)
Torsion order: \(1\)
Leading coefficient: \( 9.4040412448902778591418385819849411838 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a)\) \(2\) \(13\) \(I_{13}\) Split multiplicative \(-1\) \(1\) \(13\) \(13\)
\((-a+1)\) \(2\) \(4\) \(I_{2}^{*}\) Additive \(1\) \(4\) \(10\) \(0\)
\((-2a+3)\) \(11\) \(3\) \(IV\) Additive \(-1\) \(2\) \(4\) \(0\)
\((2a+1)\) \(11\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 42592.18-g consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.