Learn more

Refine search


Results (18 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
4032.7-a1 4032.7-a \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.882282413$ $1.552362152$ 2.070673566 \( \frac{48284377}{189} a - \frac{108521789}{567} \) \( \bigl[a + 1\) , \( a + 1\) , \( a + 1\) , \( -4 a + 56\) , \( 148 a - 16\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-4a+56\right){x}+148a-16$
4032.7-a2 4032.7-a \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.882282413$ $3.104724304$ 2.070673566 \( -\frac{219127}{7} a - \frac{566221}{21} \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( 4 a - 13\) , \( -11 a + 10\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(4a-13\right){x}-11a+10$
4032.7-a3 4032.7-a \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.441141206$ $3.104724304$ 2.070673566 \( -\frac{4009}{21} a + \frac{2191}{9} \) \( \bigl[a + 1\) , \( a + 1\) , \( a + 1\) , \( a + 1\) , \( 4 a\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(a+1\right){x}+4a$
4032.7-a4 4032.7-a \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.220570603$ $3.104724304$ 2.070673566 \( \frac{166231}{49} a + \frac{660025}{147} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( 2 a - 6\) , \( 2 a - 2\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(2a-6\right){x}+2a-2$
4032.7-b1 4032.7-b \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.983354618$ 1.499275166 \( -\frac{863944673}{63} a - \frac{1616364293}{63} \) \( \bigl[a + 1\) , \( a + 1\) , \( 0\) , \( 38 a + 22\) , \( 87 a - 245\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(38a+22\right){x}+87a-245$
4032.7-b2 4032.7-b \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.991677309$ 1.499275166 \( \frac{70011793}{7203} a - \frac{221078161}{7203} \) \( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( 21 a + 73\) , \( 214 a - 242\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(21a+73\right){x}+214a-242$
4032.7-b3 4032.7-b \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.983354618$ 1.499275166 \( \frac{172799}{441} a - \frac{2545}{9} \) \( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( 6 a - 2\) , \( 13 a + 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(6a-2\right){x}+13a+1$
4032.7-b4 4032.7-b \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.983354618$ 1.499275166 \( -\frac{839201}{189} a + \frac{2555873}{567} \) \( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( 8 a - 17\) , \( 12 a - 23\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(8a-17\right){x}+12a-23$
4032.7-b5 4032.7-b \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.991677309$ 1.499275166 \( \frac{78717967}{15309} a - \frac{9092939}{45927} \) \( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( 13 a - 72\) , \( -80 a + 205\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(13a-72\right){x}-80a+205$
4032.7-b6 4032.7-b \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.983354618$ 1.499275166 \( -\frac{13784383}{21} a + \frac{8018911}{21} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( a - 39\) , \( 112\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(a-39\right){x}+112$
4032.7-c1 4032.7-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.304790221$ 1.843198006 \( -\frac{4354703137}{17294403} \) \( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( 170 a - 238\) , \( 3689 a - 2387\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(170a-238\right){x}+3689a-2387$
4032.7-c2 4032.7-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.438321771$ 1.843198006 \( \frac{103823}{63} \) \( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( -5 a + 7\) , \( 0\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-5a+7\right){x}$
4032.7-c3 4032.7-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.219160885$ 1.843198006 \( \frac{7189057}{3969} \) \( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( 20 a - 28\) , \( 17 a - 11\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(20a-28\right){x}+17a-11$
4032.7-c4 4032.7-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.609580442$ 1.843198006 \( \frac{6570725617}{45927} \) \( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( 195 a - 273\) , \( -1530 a + 990\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(195a-273\right){x}-1530a+990$
4032.7-c5 4032.7-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.438321771$ 1.843198006 \( -\frac{2940226}{21} a + \frac{5920433}{21} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( 6 a + 18\) , \( 21 a - 39\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(6a+18\right){x}+21a-39$
4032.7-c6 4032.7-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.438321771$ 1.843198006 \( \frac{2940226}{21} a + \frac{2980207}{21} \) \( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( -13 a - 10\) , \( 16 a + 13\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-13a-10\right){x}+16a+13$
4032.7-c7 4032.7-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.609580442$ 1.843198006 \( \frac{13027640977}{21609} \) \( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( 245 a - 343\) , \( 2312 a - 1496\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(245a-343\right){x}+2312a-1496$
4032.7-c8 4032.7-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{2} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.304790221$ 1.843198006 \( \frac{53297461115137}{147} \) \( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( 3920 a - 5488\) , \( 144755 a - 93665\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(3920a-5488\right){x}+144755a-93665$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.