Properties

Label 2.0.7.1-39200.5-a5
Base field \(\Q(\sqrt{-7}) \)
Conductor norm \( 39200 \)
CM no
Base change no
Q-curve yes
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-7}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, -1, 1]))
 
gp: K = nfinit(Polrev([2, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(1842a-614\right){x}+19374a+25802\)
sage: E = EllipticCurve([K([1,1]),K([1,0]),K([0,0]),K([-614,1842]),K([25802,19374])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([1,0]),Polrev([0,0]),Polrev([-614,1842]),Polrev([25802,19374])], K);
 
magma: E := EllipticCurve([K![1,1],K![1,0],K![0,0],K![-614,1842],K![25802,19374]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((70a-210)\) = \((a)\cdot(-a+1)^{4}\cdot(-2a+1)^{2}\cdot(5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 39200 \) = \(2\cdot2^{4}\cdot7^{2}\cdot25\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((84410156250a+1875781250)\) = \((a)\cdot(-a+1)^{13}\cdot(-2a+1)^{8}\cdot(5)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 14412002500000000000000 \) = \(2\cdot2^{13}\cdot7^{8}\cdot25^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{74565301329}{5468750} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{923}{121} a - \frac{369}{121} : -\frac{110311}{1331} a - \frac{130005}{1331} : 1\right)$
Height \(2.6452783518031329915754833287709310928\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{77}{4} a - \frac{131}{4} : -\frac{23}{8} a + \frac{285}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 2.6452783518031329915754833287709310928 \)
Period: \( 0.17480615611758177533358757021079832450 \)
Tamagawa product: \( 16 \)  =  \(1\cdot2^{2}\cdot2\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 2.7963985192769710464642409464165334737 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a)\) \(2\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((-a+1)\) \(2\) \(4\) \(I_{5}^{*}\) Additive \(-1\) \(4\) \(13\) \(1\)
\((-2a+1)\) \(7\) \(2\) \(I_{2}^{*}\) Additive \(-1\) \(2\) \(8\) \(2\)
\((5)\) \(25\) \(2\) \(I_{8}\) Non-split multiplicative \(1\) \(1\) \(8\) \(8\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 39200.5-a consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.