Learn more

Refine search


Results (26 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
36288.7-a1 36288.7-a \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.661118206$ 0.999516777 \( -\frac{863944673}{63} a - \frac{1616364293}{63} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 324 a + 215\) , \( -941 a + 5506\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(324a+215\right){x}-941a+5506$
36288.7-a2 36288.7-a \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.330559103$ 0.999516777 \( \frac{70011793}{7203} a - \frac{221078161}{7203} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 189 a + 656\) , \( -5589 a + 7190\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(189a+656\right){x}-5589a+7190$
36288.7-a3 36288.7-a \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.661118206$ 0.999516777 \( \frac{172799}{441} a - \frac{2545}{9} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 54 a - 19\) , \( -297 a - 46\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(54a-19\right){x}-297a-46$
36288.7-a4 36288.7-a \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.330559103$ 0.999516777 \( \frac{78717967}{15309} a - \frac{9092939}{45927} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 123 a - 634\) , \( 1111 a - 6030\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(123a-634\right){x}+1111a-6030$
36288.7-a5 36288.7-a \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.661118206$ 0.999516777 \( -\frac{839201}{189} a + \frac{2555873}{567} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 78 a - 139\) , \( -473 a + 306\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(78a-139\right){x}-473a+306$
36288.7-a6 36288.7-a \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.661118206$ 0.999516777 \( -\frac{13784383}{21} a + \frac{8018911}{21} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 6 a - 355\) , \( -9 a - 2670\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(6a-355\right){x}-9a-2670$
36288.7-b1 36288.7-b \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.397772588$ $1.615920795$ 2.928930299 \( -\frac{243}{7} a - \frac{351}{7} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( -6 a + 2\) , \( 20 a - 18\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-6a+2\right){x}+20a-18$
36288.7-b2 36288.7-b \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.198886294$ $0.807960397$ 2.928930299 \( -\frac{156735}{7} a + \frac{126117}{7} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( -6 a + 137\) , \( 479 a - 126\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-6a+137\right){x}+479a-126$
36288.7-c1 36288.7-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.101596740$ 1.228798671 \( -\frac{4354703137}{17294403} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 1530 a - 2143\) , \( -98073 a + 62306\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(1530a-2143\right){x}-98073a+62306$
36288.7-c2 36288.7-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.812773923$ 1.228798671 \( \frac{103823}{63} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( -45 a + 62\) , \( -45 a + 62\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-45a+62\right){x}-45a+62$
36288.7-c3 36288.7-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.406386961$ 1.228798671 \( \frac{7189057}{3969} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 180 a - 253\) , \( -279 a + 44\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(180a-253\right){x}-279a+44$
36288.7-c4 36288.7-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.812773923$ 1.228798671 \( \frac{2940226}{21} a + \frac{2980207}{21} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( -111 a - 76\) , \( -833 a + 90\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-111a-76\right){x}-833a+90$
36288.7-c5 36288.7-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.203193480$ 1.228798671 \( \frac{6570725617}{45927} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 1755 a - 2458\) , \( 43065 a - 29188\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(1755a-2458\right){x}+43065a-29188$
36288.7-c6 36288.7-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.812773923$ 1.228798671 \( -\frac{2940226}{21} a + \frac{5920433}{21} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 51 a + 158\) , \( -621 a + 894\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(51a+158\right){x}-621a+894$
36288.7-c7 36288.7-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.203193480$ 1.228798671 \( \frac{13027640977}{21609} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 2205 a - 3088\) , \( -60219 a + 37304\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(2205a-3088\right){x}-60219a+37304$
36288.7-c8 36288.7-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.101596740$ 1.228798671 \( \frac{53297461115137}{147} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 35280 a - 49393\) , \( -3873105 a + 2479562\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(35280a-49393\right){x}-3873105a+2479562$
36288.7-d1 36288.7-d \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.404492501$ $4.847762387$ 5.146852535 \( -\frac{243}{7} a - \frac{351}{7} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( 0\) , \( -a + 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}-a+1$
36288.7-d2 36288.7-d \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.702246250$ $2.423881193$ 5.146852535 \( -\frac{156735}{7} a + \frac{126117}{7} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( 15\) , \( -13 a + 10\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+15{x}-13a+10$
36288.7-e1 36288.7-e \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.239805762$ $1.636784519$ 5.542591071 \( \frac{2525}{7} a + \frac{8121}{7} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( -9 a - 6\) , \( -16 a + 19\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-9a-6\right){x}-16a+19$
36288.7-e2 36288.7-e \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.119902881$ $1.636784519$ 5.542591071 \( -\frac{3555}{7} a + \frac{15857}{7} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( -9 a + 18\) , \( 27\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-9a+18\right){x}+27$
36288.7-e3 36288.7-e \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.239805762$ $0.818392259$ 5.542591071 \( \frac{1482409}{49} a + \frac{907013}{49} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( -54 a + 153\) , \( -351 a - 216\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-54a+153\right){x}-351a-216$
36288.7-e4 36288.7-e \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.239805762$ $1.636784519$ 5.542591071 \( -\frac{9225207}{7} a + \frac{9710861}{7} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( -36 a - 24\) , \( 119 a - 3\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-36a-24\right){x}+119a-3$
36288.7-f1 36288.7-f \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.420594567$ $0.517454050$ 5.351978495 \( \frac{48284377}{189} a - \frac{108521789}{567} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( -39 a + 516\) , \( -3098 a + 1089\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-39a+516\right){x}-3098a+1089$
36288.7-f2 36288.7-f \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.420594567$ $1.034908101$ 5.351978495 \( -\frac{219127}{7} a - \frac{566221}{21} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( 30 a - 99\) , \( 151 a - 394\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(30a-99\right){x}+151a-394$
36288.7-f3 36288.7-f \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.710297283$ $1.034908101$ 5.351978495 \( -\frac{4009}{21} a + \frac{2191}{9} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( 6 a + 21\) , \( -65 a - 18\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(6a+21\right){x}-65a-18$
36288.7-f4 36288.7-f \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.855148641$ $1.034908101$ 5.351978495 \( \frac{166231}{49} a + \frac{660025}{147} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( 30 a - 63\) , \( -105 a + 122\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(30a-63\right){x}-105a+122$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.