Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
36288.7-a1 |
36288.7-a |
$6$ |
$8$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
36288.7 |
\( 2^{6} \cdot 3^{4} \cdot 7 \) |
\( 2^{10} \cdot 3^{16} \cdot 7 \) |
$3.26308$ |
$(-a+1), (-2a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$0.661118206$ |
0.999516777 |
\( -\frac{863944673}{63} a - \frac{1616364293}{63} \) |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 324 a + 215\) , \( -941 a + 5506\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(324a+215\right){x}-941a+5506$ |
36288.7-a2 |
36288.7-a |
$6$ |
$8$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
36288.7 |
\( 2^{6} \cdot 3^{4} \cdot 7 \) |
\( 2^{17} \cdot 3^{14} \cdot 7^{8} \) |
$3.26308$ |
$(-a+1), (-2a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$0.330559103$ |
0.999516777 |
\( \frac{70011793}{7203} a - \frac{221078161}{7203} \) |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 189 a + 656\) , \( -5589 a + 7190\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(189a+656\right){x}-5589a+7190$ |
36288.7-a3 |
36288.7-a |
$6$ |
$8$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
36288.7 |
\( 2^{6} \cdot 3^{4} \cdot 7 \) |
\( 2^{16} \cdot 3^{16} \cdot 7^{4} \) |
$3.26308$ |
$(-a+1), (-2a+1), (3)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$1$ |
$0.661118206$ |
0.999516777 |
\( \frac{172799}{441} a - \frac{2545}{9} \) |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 54 a - 19\) , \( -297 a - 46\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(54a-19\right){x}-297a-46$ |
36288.7-a4 |
36288.7-a |
$6$ |
$8$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
36288.7 |
\( 2^{6} \cdot 3^{4} \cdot 7 \) |
\( 2^{16} \cdot 3^{28} \cdot 7 \) |
$3.26308$ |
$(-a+1), (-2a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$0.330559103$ |
0.999516777 |
\( \frac{78717967}{15309} a - \frac{9092939}{45927} \) |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 123 a - 634\) , \( 1111 a - 6030\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(123a-634\right){x}+1111a-6030$ |
36288.7-a5 |
36288.7-a |
$6$ |
$8$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
36288.7 |
\( 2^{6} \cdot 3^{4} \cdot 7 \) |
\( 2^{14} \cdot 3^{20} \cdot 7^{2} \) |
$3.26308$ |
$(-a+1), (-2a+1), (3)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$1$ |
$0.661118206$ |
0.999516777 |
\( -\frac{839201}{189} a + \frac{2555873}{567} \) |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 78 a - 139\) , \( -473 a + 306\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(78a-139\right){x}-473a+306$ |
36288.7-a6 |
36288.7-a |
$6$ |
$8$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
36288.7 |
\( 2^{6} \cdot 3^{4} \cdot 7 \) |
\( 2^{17} \cdot 3^{14} \cdot 7^{2} \) |
$3.26308$ |
$(-a+1), (-2a+1), (3)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$1$ |
$0.661118206$ |
0.999516777 |
\( -\frac{13784383}{21} a + \frac{8018911}{21} \) |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 6 a - 355\) , \( -9 a - 2670\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(6a-355\right){x}-9a-2670$ |
36288.7-b1 |
36288.7-b |
$2$ |
$2$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
36288.7 |
\( 2^{6} \cdot 3^{4} \cdot 7 \) |
\( 2^{6} \cdot 3^{18} \cdot 7 \) |
$3.26308$ |
$(-a+1), (-2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$2.397772588$ |
$1.615920795$ |
2.928930299 |
\( -\frac{243}{7} a - \frac{351}{7} \) |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( -6 a + 2\) , \( 20 a - 18\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-6a+2\right){x}+20a-18$ |
36288.7-b2 |
36288.7-b |
$2$ |
$2$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
36288.7 |
\( 2^{6} \cdot 3^{4} \cdot 7 \) |
\( 2^{12} \cdot 3^{18} \cdot 7^{2} \) |
$3.26308$ |
$(-a+1), (-2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1.198886294$ |
$0.807960397$ |
2.928930299 |
\( -\frac{156735}{7} a + \frac{126117}{7} \) |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( -6 a + 137\) , \( 479 a - 126\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-6a+137\right){x}+479a-126$ |
36288.7-c1 |
36288.7-c |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
36288.7 |
\( 2^{6} \cdot 3^{4} \cdot 7 \) |
\( 2^{18} \cdot 3^{14} \cdot 7^{16} \) |
$3.26308$ |
$(-a+1), (-2a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{6} \) |
$1$ |
$0.101596740$ |
1.228798671 |
\( -\frac{4354703137}{17294403} \) |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 1530 a - 2143\) , \( -98073 a + 62306\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(1530a-2143\right){x}-98073a+62306$ |
36288.7-c2 |
36288.7-c |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
36288.7 |
\( 2^{6} \cdot 3^{4} \cdot 7 \) |
\( 2^{18} \cdot 3^{16} \cdot 7^{2} \) |
$3.26308$ |
$(-a+1), (-2a+1), (3)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$1$ |
$0.812773923$ |
1.228798671 |
\( \frac{103823}{63} \) |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( -45 a + 62\) , \( -45 a + 62\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-45a+62\right){x}-45a+62$ |
36288.7-c3 |
36288.7-c |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
36288.7 |
\( 2^{6} \cdot 3^{4} \cdot 7 \) |
\( 2^{18} \cdot 3^{20} \cdot 7^{4} \) |
$3.26308$ |
$(-a+1), (-2a+1), (3)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$1$ |
$0.406386961$ |
1.228798671 |
\( \frac{7189057}{3969} \) |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 180 a - 253\) , \( -279 a + 44\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(180a-253\right){x}-279a+44$ |
36288.7-c4 |
36288.7-c |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
36288.7 |
\( 2^{6} \cdot 3^{4} \cdot 7 \) |
\( 2^{18} \cdot 3^{14} \cdot 7 \) |
$3.26308$ |
$(-a+1), (-2a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$0.812773923$ |
1.228798671 |
\( \frac{2940226}{21} a + \frac{2980207}{21} \) |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( -111 a - 76\) , \( -833 a + 90\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-111a-76\right){x}-833a+90$ |
36288.7-c5 |
36288.7-c |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
36288.7 |
\( 2^{6} \cdot 3^{4} \cdot 7 \) |
\( 2^{18} \cdot 3^{28} \cdot 7^{2} \) |
$3.26308$ |
$(-a+1), (-2a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$1$ |
$0.203193480$ |
1.228798671 |
\( \frac{6570725617}{45927} \) |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 1755 a - 2458\) , \( 43065 a - 29188\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(1755a-2458\right){x}+43065a-29188$ |
36288.7-c6 |
36288.7-c |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
36288.7 |
\( 2^{6} \cdot 3^{4} \cdot 7 \) |
\( 2^{18} \cdot 3^{14} \cdot 7 \) |
$3.26308$ |
$(-a+1), (-2a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$0.812773923$ |
1.228798671 |
\( -\frac{2940226}{21} a + \frac{5920433}{21} \) |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 51 a + 158\) , \( -621 a + 894\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(51a+158\right){x}-621a+894$ |
36288.7-c7 |
36288.7-c |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
36288.7 |
\( 2^{6} \cdot 3^{4} \cdot 7 \) |
\( 2^{18} \cdot 3^{16} \cdot 7^{8} \) |
$3.26308$ |
$(-a+1), (-2a+1), (3)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{7} \) |
$1$ |
$0.203193480$ |
1.228798671 |
\( \frac{13027640977}{21609} \) |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 2205 a - 3088\) , \( -60219 a + 37304\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(2205a-3088\right){x}-60219a+37304$ |
36288.7-c8 |
36288.7-c |
$8$ |
$16$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
36288.7 |
\( 2^{6} \cdot 3^{4} \cdot 7 \) |
\( 2^{18} \cdot 3^{14} \cdot 7^{4} \) |
$3.26308$ |
$(-a+1), (-2a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$4$ |
\( 2^{4} \) |
$1$ |
$0.101596740$ |
1.228798671 |
\( \frac{53297461115137}{147} \) |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 35280 a - 49393\) , \( -3873105 a + 2479562\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(35280a-49393\right){x}-3873105a+2479562$ |
36288.7-d1 |
36288.7-d |
$2$ |
$2$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
36288.7 |
\( 2^{6} \cdot 3^{4} \cdot 7 \) |
\( 2^{6} \cdot 3^{6} \cdot 7 \) |
$3.26308$ |
$(-a+1), (-2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1.404492501$ |
$4.847762387$ |
5.146852535 |
\( -\frac{243}{7} a - \frac{351}{7} \) |
\( \bigl[a + 1\) , \( 1\) , \( 0\) , \( 0\) , \( -a + 1\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}-a+1$ |
36288.7-d2 |
36288.7-d |
$2$ |
$2$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
36288.7 |
\( 2^{6} \cdot 3^{4} \cdot 7 \) |
\( 2^{12} \cdot 3^{6} \cdot 7^{2} \) |
$3.26308$ |
$(-a+1), (-2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.702246250$ |
$2.423881193$ |
5.146852535 |
\( -\frac{156735}{7} a + \frac{126117}{7} \) |
\( \bigl[a + 1\) , \( 1\) , \( 0\) , \( 15\) , \( -13 a + 10\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+15{x}-13a+10$ |
36288.7-e1 |
36288.7-e |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
36288.7 |
\( 2^{6} \cdot 3^{4} \cdot 7 \) |
\( 2^{15} \cdot 3^{12} \cdot 7 \) |
$3.26308$ |
$(-a+1), (-2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$2.239805762$ |
$1.636784519$ |
5.542591071 |
\( \frac{2525}{7} a + \frac{8121}{7} \) |
\( \bigl[a + 1\) , \( 1\) , \( 0\) , \( -9 a - 6\) , \( -16 a + 19\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-9a-6\right){x}-16a+19$ |
36288.7-e2 |
36288.7-e |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
36288.7 |
\( 2^{6} \cdot 3^{4} \cdot 7 \) |
\( 2^{12} \cdot 3^{12} \cdot 7^{2} \) |
$3.26308$ |
$(-a+1), (-2a+1), (3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$1.119902881$ |
$1.636784519$ |
5.542591071 |
\( -\frac{3555}{7} a + \frac{15857}{7} \) |
\( \bigl[a + 1\) , \( 1\) , \( 0\) , \( -9 a + 18\) , \( 27\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-9a+18\right){x}+27$ |
36288.7-e3 |
36288.7-e |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
36288.7 |
\( 2^{6} \cdot 3^{4} \cdot 7 \) |
\( 2^{15} \cdot 3^{12} \cdot 7^{4} \) |
$3.26308$ |
$(-a+1), (-2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$2.239805762$ |
$0.818392259$ |
5.542591071 |
\( \frac{1482409}{49} a + \frac{907013}{49} \) |
\( \bigl[a + 1\) , \( 1\) , \( 0\) , \( -54 a + 153\) , \( -351 a - 216\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-54a+153\right){x}-351a-216$ |
36288.7-e4 |
36288.7-e |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
36288.7 |
\( 2^{6} \cdot 3^{4} \cdot 7 \) |
\( 2^{6} \cdot 3^{12} \cdot 7 \) |
$3.26308$ |
$(-a+1), (-2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$2.239805762$ |
$1.636784519$ |
5.542591071 |
\( -\frac{9225207}{7} a + \frac{9710861}{7} \) |
\( \bigl[a + 1\) , \( 1\) , \( 0\) , \( -36 a - 24\) , \( 119 a - 3\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-36a-24\right){x}+119a-3$ |
36288.7-f1 |
36288.7-f |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
36288.7 |
\( 2^{6} \cdot 3^{4} \cdot 7 \) |
\( 2^{16} \cdot 3^{20} \cdot 7 \) |
$3.26308$ |
$(-a+1), (-2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$3.420594567$ |
$0.517454050$ |
5.351978495 |
\( \frac{48284377}{189} a - \frac{108521789}{567} \) |
\( \bigl[a + 1\) , \( 1\) , \( 0\) , \( -39 a + 516\) , \( -3098 a + 1089\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-39a+516\right){x}-3098a+1089$ |
36288.7-f2 |
36288.7-f |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
36288.7 |
\( 2^{6} \cdot 3^{4} \cdot 7 \) |
\( 2^{16} \cdot 3^{14} \cdot 7 \) |
$3.26308$ |
$(-a+1), (-2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$3.420594567$ |
$1.034908101$ |
5.351978495 |
\( -\frac{219127}{7} a - \frac{566221}{21} \) |
\( \bigl[a + 1\) , \( 1\) , \( 0\) , \( 30 a - 99\) , \( 151 a - 394\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(30a-99\right){x}+151a-394$ |
36288.7-f3 |
36288.7-f |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
36288.7 |
\( 2^{6} \cdot 3^{4} \cdot 7 \) |
\( 2^{14} \cdot 3^{16} \cdot 7^{2} \) |
$3.26308$ |
$(-a+1), (-2a+1), (3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$1.710297283$ |
$1.034908101$ |
5.351978495 |
\( -\frac{4009}{21} a + \frac{2191}{9} \) |
\( \bigl[a + 1\) , \( 1\) , \( 0\) , \( 6 a + 21\) , \( -65 a - 18\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(6a+21\right){x}-65a-18$ |
36288.7-f4 |
36288.7-f |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
36288.7 |
\( 2^{6} \cdot 3^{4} \cdot 7 \) |
\( 2^{10} \cdot 3^{14} \cdot 7^{4} \) |
$3.26308$ |
$(-a+1), (-2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.855148641$ |
$1.034908101$ |
5.351978495 |
\( \frac{166231}{49} a + \frac{660025}{147} \) |
\( \bigl[a + 1\) , \( 1\) , \( 0\) , \( 30 a - 63\) , \( -105 a + 122\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(30a-63\right){x}-105a+122$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.