Learn more

Refine search


Results (26 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
36288.1-a1 36288.1-a \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.198886294$ $0.807960397$ 2.928930299 \( \frac{156735}{7} a - 4374 \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( 6 a + 132\) , \( -485 a + 222\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(6a+132\right){x}-485a+222$
36288.1-a2 36288.1-a \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.397772588$ $1.615920795$ 2.928930299 \( \frac{243}{7} a - \frac{594}{7} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( 6 a - 3\) , \( -26 a + 6\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(6a-3\right){x}-26a+6$
36288.1-b1 36288.1-b \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.661118206$ 0.999516777 \( \frac{863944673}{63} a - \frac{2480308966}{63} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -324 a + 540\) , \( 1265 a + 4026\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-324a+540\right){x}+1265a+4026$
36288.1-b2 36288.1-b \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.661118206$ 0.999516777 \( \frac{13784383}{21} a - \frac{1921824}{7} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -6 a - 348\) , \( 15 a - 2330\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-6a-348\right){x}+15a-2330$
36288.1-b3 36288.1-b \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.330559103$ 0.999516777 \( -\frac{70011793}{7203} a - \frac{50355456}{2401} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -189 a + 846\) , \( 5778 a + 756\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-189a+846\right){x}+5778a+756$
36288.1-b4 36288.1-b \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.661118206$ 0.999516777 \( \frac{839201}{189} a + \frac{38270}{567} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -78 a - 60\) , \( 551 a - 106\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-78a-60\right){x}+551a-106$
36288.1-b5 36288.1-b \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.661118206$ 0.999516777 \( -\frac{172799}{441} a + \frac{48094}{441} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -54 a + 36\) , \( 351 a - 378\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-54a+36\right){x}+351a-378$
36288.1-b6 36288.1-b \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.330559103$ 0.999516777 \( -\frac{78717967}{15309} a + \frac{227060962}{45927} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -123 a - 510\) , \( -988 a - 4408\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-123a-510\right){x}-988a-4408$
36288.1-c1 36288.1-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.101596740$ 1.228798671 \( -\frac{4354703137}{17294403} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -1530 a - 612\) , \( 99603 a - 35154\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-1530a-612\right){x}+99603a-35154$
36288.1-c2 36288.1-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.812773923$ 1.228798671 \( \frac{103823}{63} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( 45 a + 18\) , \( 0\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(45a+18\right){x}$
36288.1-c3 36288.1-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.406386961$ 1.228798671 \( \frac{7189057}{3969} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -180 a - 72\) , \( 459 a - 162\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-180a-72\right){x}+459a-162$
36288.1-c4 36288.1-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.812773923$ 1.228798671 \( \frac{2940226}{21} a + \frac{2980207}{21} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -51 a + 210\) , \( 672 a + 64\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-51a+210\right){x}+672a+64$
36288.1-c5 36288.1-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.203193480$ 1.228798671 \( \frac{6570725617}{45927} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -1755 a - 702\) , \( -41310 a + 14580\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-1755a-702\right){x}-41310a+14580$
36288.1-c6 36288.1-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.812773923$ 1.228798671 \( -\frac{2940226}{21} a + \frac{5920433}{21} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( 111 a - 186\) , \( 722 a - 556\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(111a-186\right){x}+722a-556$
36288.1-c7 36288.1-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.203193480$ 1.228798671 \( \frac{13027640977}{21609} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -2205 a - 882\) , \( 62424 a - 22032\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-2205a-882\right){x}+62424a-22032$
36288.1-c8 36288.1-c \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.101596740$ 1.228798671 \( \frac{53297461115137}{147} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -35280 a - 14112\) , \( 3908385 a - 1379430\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-35280a-14112\right){x}+3908385a-1379430$
36288.1-d1 36288.1-d \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.702246250$ $2.423881193$ 5.146852535 \( \frac{156735}{7} a - 4374 \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( a + 16\) , \( 12 a - 17\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(a+16\right){x}+12a-17$
36288.1-d2 36288.1-d \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.404492501$ $4.847762387$ 5.146852535 \( \frac{243}{7} a - \frac{594}{7} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( a + 1\) , \( 1\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(a+1\right){x}+1$
36288.1-e1 36288.1-e \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.239805762$ $1.636784519$ 5.542591071 \( -\frac{2525}{7} a + \frac{10646}{7} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( 10 a - 14\) , \( 6 a + 19\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(10a-14\right){x}+6a+19$
36288.1-e2 36288.1-e \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.119902881$ $1.636784519$ 5.542591071 \( \frac{3555}{7} a + \frac{12302}{7} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( 10 a + 10\) , \( -10 a + 19\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(10a+10\right){x}-10a+19$
36288.1-e3 36288.1-e \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.239805762$ $0.818392259$ 5.542591071 \( -\frac{1482409}{49} a + \frac{341346}{7} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( 55 a + 100\) , \( 296 a - 665\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(55a+100\right){x}+296a-665$
36288.1-e4 36288.1-e \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.239805762$ $1.636784519$ 5.542591071 \( \frac{9225207}{7} a + \frac{485654}{7} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( 37 a - 59\) , \( -156 a + 177\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(37a-59\right){x}-156a+177$
36288.1-f1 36288.1-f \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.420594567$ $1.034908101$ 5.351978495 \( \frac{219127}{7} a - \frac{1223602}{21} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( -29 a - 68\) , \( -122 a - 173\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-29a-68\right){x}-122a-173$
36288.1-f2 36288.1-f \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.710297283$ $1.034908101$ 5.351978495 \( \frac{4009}{21} a + \frac{3310}{63} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( -5 a + 28\) , \( 70 a - 109\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-5a+28\right){x}+70a-109$
36288.1-f3 36288.1-f \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.855148641$ $1.034908101$ 5.351978495 \( -\frac{166231}{49} a + \frac{1158718}{147} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( -29 a - 32\) , \( 134 a + 51\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-29a-32\right){x}+134a+51$
36288.1-f4 36288.1-f \(\Q(\sqrt{-7}) \) \( 2^{6} \cdot 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.420594567$ $0.517454050$ 5.351978495 \( -\frac{48284377}{189} a + \frac{36331342}{567} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( 40 a + 478\) , \( 3058 a - 2485\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(40a+478\right){x}+3058a-2485$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.