Learn more

Refine search


Results (10 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
34848.3-a1 34848.3-a \(\Q(\sqrt{-7}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.928107840$ 1.457512527 \( \frac{13685}{9} a - \frac{34846}{9} \) \( \bigl[a\) , \( a - 1\) , \( 0\) , \( -2 a + 15\) , \( 26 a - 14\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-2a+15\right){x}+26a-14$
34848.3-a2 34848.3-a \(\Q(\sqrt{-7}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.928107840$ 1.457512527 \( -\frac{4913}{3} a - \frac{9826}{3} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -5 a - 11\) , \( -13 a - 19\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-5a-11\right){x}-13a-19$
34848.3-a3 34848.3-a \(\Q(\sqrt{-7}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.964053920$ 1.457512527 \( -\frac{5525}{9} a - \frac{136882}{81} \) \( \bigl[a\) , \( a - 1\) , \( 0\) , \( 38 a - 20\) , \( 81 a + 74\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(38a-20\right){x}+81a+74$
34848.3-a4 34848.3-a \(\Q(\sqrt{-7}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.964053920$ 1.457512527 \( -\frac{35168257}{3} a + \frac{48883966}{3} \) \( \bigl[a\) , \( a - 1\) , \( 0\) , \( -17 a + 255\) , \( 1235 a - 482\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-17a+255\right){x}+1235a-482$
34848.3-b1 34848.3-b \(\Q(\sqrt{-7}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.233416372$ $0.779330594$ 3.300237983 \( -\frac{14024}{81} a - \frac{100072}{81} \) \( \bigl[0\) , \( -a - 1\) , \( a\) , \( 8 a - 72\) , \( 81 a - 323\bigr] \) ${y}^2+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(8a-72\right){x}+81a-323$
34848.3-c1 34848.3-c \(\Q(\sqrt{-7}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.256423742$ $2.584747169$ 4.008180453 \( -\frac{14024}{81} a - \frac{100072}{81} \) \( \bigl[0\) , \( a - 1\) , \( a\) , \( 4 a\) , \( -a - 11\bigr] \) ${y}^2+a{y}={x}^{3}+\left(a-1\right){x}^{2}+4a{x}-a-11$
34848.3-d1 34848.3-d \(\Q(\sqrt{-7}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $2.730785362$ $1.383334169$ 5.711177290 \( -\frac{31577}{363} a + \frac{34786}{1089} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( 7 a + 1\) , \( 15 a - 54\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(7a+1\right){x}+15a-54$
34848.3-d2 34848.3-d \(\Q(\sqrt{-7}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.365392681$ $0.691667084$ 5.711177290 \( \frac{105966679}{14641} a + \frac{279944450}{43923} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -113 a + 106\) , \( 198 a - 804\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(-113a+106\right){x}+198a-804$
34848.3-d3 34848.3-d \(\Q(\sqrt{-7}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $5.461570724$ $1.383334169$ 5.711177290 \( -\frac{359177}{11} a + \frac{396314}{33} \) \( \bigl[a\) , \( a\) , \( 0\) , \( 32 a + 8\) , \( 15 a - 162\bigr] \) ${y}^2+a{x}{y}={x}^{3}+a{x}^{2}+\left(32a+8\right){x}+15a-162$
34848.3-d4 34848.3-d \(\Q(\sqrt{-7}) \) \( 2^{5} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.365392681$ $0.691667084$ 5.711177290 \( \frac{46588633}{297} a + \frac{73036934}{891} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( 152 a + 101\) , \( 310 a - 1870\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(152a+101\right){x}+310a-1870$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.