Base field \(\Q(\sqrt{-7}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x + 2 \); class number \(1\).
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, -1, 1]))
gp: K = nfinit(Polrev([2, -1, 1]));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -1, 1]);
Weierstrass equation
sage: E = EllipticCurve([K([1,0]),K([0,0]),K([0,0]),K([-3507,0]),K([6507,0])])
gp: E = ellinit([Polrev([1,0]),Polrev([0,0]),Polrev([0,0]),Polrev([-3507,0]),Polrev([6507,0])], K);
magma: E := EllipticCurve([K![1,0],K![0,0],K![0,0],K![-3507,0],K![6507,0]]);
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
Conductor: | \((-132a+66)\) | = | \((a)\cdot(-a+1)\cdot(-2a+1)\cdot(3)\cdot(-2a+3)\cdot(2a+1)\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 30492 \) | = | \(2\cdot2\cdot7\cdot9\cdot11\cdot11\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \((2740574865798)\) | = | \((a)\cdot(-a+1)\cdot(-2a+1)^{24}\cdot(3)^{2}\cdot(-2a+3)\cdot(2a+1)\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( 7510750595043725710176804 \) | = | \(2\cdot2\cdot7^{24}\cdot9^{2}\cdot11\cdot11\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
j-invariant: | \( \frac{4770223741048753}{2740574865798} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank: | \(0\) |
Torsion structure: | \(\Z/2\Z\) |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
| |
Torsion generator: | $\left(-\frac{241}{4} : \frac{241}{8} : 1\right)$ |
sage: T.gens()
gp: T[3]
magma: [piT(P) : P in Generators(T)];
|
BSD invariants
Analytic rank: | \( 0 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(0\) | ||
Regulator: | \( 1 \) | ||
Period: | \( 0.11619789399176320701553920474339185188 \) | ||
Tamagawa product: | \( 4 \) = \(1\cdot1\cdot2\cdot2\cdot1\cdot1\) | ||
Torsion order: | \(2\) | ||
Leading coefficient: | \( 5.6215904982244904000164458636640076649 \) | ||
Analytic order of Ш: | \( 64 \) (rounded) |
Local data at primes of bad reduction
sage: E.local_data()
magma: LocalInformation(E);
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\((a)\) | \(2\) | \(1\) | \(I_{1}\) | Split multiplicative | \(-1\) | \(1\) | \(1\) | \(1\) |
\((-a+1)\) | \(2\) | \(1\) | \(I_{1}\) | Split multiplicative | \(-1\) | \(1\) | \(1\) | \(1\) |
\((-2a+1)\) | \(7\) | \(2\) | \(I_{24}\) | Non-split multiplicative | \(1\) | \(1\) | \(24\) | \(24\) |
\((3)\) | \(9\) | \(2\) | \(I_{2}\) | Split multiplicative | \(-1\) | \(1\) | \(2\) | \(2\) |
\((-2a+3)\) | \(11\) | \(1\) | \(I_{1}\) | Split multiplicative | \(-1\) | \(1\) | \(1\) | \(1\) |
\((2a+1)\) | \(11\) | \(1\) | \(I_{1}\) | Split multiplicative | \(-1\) | \(1\) | \(1\) | \(1\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 4 and 8.
Its isogeny class
30492.5-o
consists of curves linked by isogenies of
degrees dividing 8.
Base change
This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:
Base field | Curve |
---|---|
\(\Q\) | 462.g2 |
\(\Q\) | 3234.p2 |