Properties

Label 2.0.7.1-2916.2-h1
Base field \(\Q(\sqrt{-7}) \)
Conductor norm \( 2916 \)
CM no
Base change no
Q-curve yes
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-7}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, -1, 1]))
 
gp: K = nfinit(Polrev([2, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(40a-29\right){x}+60a+69\)
sage: E = EllipticCurve([K([1,0]),K([-1,0]),K([1,1]),K([-29,40]),K([69,60])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([-1,0]),Polrev([1,1]),Polrev([-29,40]),Polrev([69,60])], K);
 
magma: E := EllipticCurve([K![1,0],K![-1,0],K![1,1],K![-29,40],K![69,60]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((54)\) = \((a)\cdot(-a+1)\cdot(3)^{3}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 2916 \) = \(2\cdot2\cdot9^{3}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((944784a-5353776)\) = \((a)^{4}\cdot(-a+1)^{12}\cdot(3)^{9}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 25389989167104 \) = \(2^{4}\cdot2^{12}\cdot9^{9}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{8156457}{4096} a + \frac{6763851}{2048} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-9 a + 1 : 13 a + 44 : 1\right)$
Height \(0.074997115256548892003962306139165624571\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.074997115256548892003962306139165624571 \)
Period: \( 1.0096721184373837482675507777306707214 \)
Tamagawa product: \( 24 \)  =  \(2^{2}\cdot2\cdot3\)
Torsion order: \(1\)
Leading coefficient: \( 2.7475596850034705855925554427405440069 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a)\) \(2\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)
\((-a+1)\) \(2\) \(2\) \(I_{12}\) Non-split multiplicative \(1\) \(1\) \(12\) \(12\)
\((3)\) \(9\) \(3\) \(IV^{*}\) Additive \(-1\) \(3\) \(9\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 2916.2-h consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.