Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
28672.9-a1 |
28672.9-a |
$4$ |
$10$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28672.9 |
\( 2^{12} \cdot 7 \) |
\( 2^{29} \cdot 7^{2} \) |
$3.07647$ |
$(a), (-a+1), (-2a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 5$ |
2B, 5B |
$1$ |
\( 2^{3} \) |
$0.998327441$ |
$1.394083610$ |
4.208262259 |
\( -\frac{1143001}{28} a - \frac{3214301}{28} \) |
\( \bigl[0\) , \( a - 1\) , \( 0\) , \( 12 a - 64\) , \( -76 a + 204\bigr] \) |
${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(12a-64\right){x}-76a+204$ |
28672.9-a2 |
28672.9-a |
$4$ |
$10$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28672.9 |
\( 2^{12} \cdot 7 \) |
\( 2^{41} \cdot 7^{5} \) |
$3.07647$ |
$(a), (-a+1), (-2a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 5$ |
2B, 5B |
$1$ |
\( 2^{3} \) |
$2.495818603$ |
$0.557633444$ |
4.208262259 |
\( \frac{581506766557}{359661568} a + \frac{72912600945}{359661568} \) |
\( \bigl[0\) , \( a - 1\) , \( 0\) , \( 82 a + 76\) , \( 64 a - 860\bigr] \) |
${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(82a+76\right){x}+64a-860$ |
28672.9-a3 |
28672.9-a |
$4$ |
$10$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28672.9 |
\( 2^{12} \cdot 7 \) |
\( 2^{25} \cdot 7 \) |
$3.07647$ |
$(a), (-a+1), (-2a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 5$ |
2B, 5B |
$1$ |
\( 2^{3} \) |
$0.499163720$ |
$2.788167220$ |
4.208262259 |
\( -\frac{5363}{112} a + \frac{52833}{112} \) |
\( \bigl[0\) , \( a - 1\) , \( 0\) , \( 2 a - 4\) , \( 4\bigr] \) |
${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(2a-4\right){x}+4$ |
28672.9-a4 |
28672.9-a |
$4$ |
$10$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28672.9 |
\( 2^{12} \cdot 7 \) |
\( 2^{37} \cdot 7^{10} \) |
$3.07647$ |
$(a), (-a+1), (-2a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 5$ |
2B, 5B |
$1$ |
\( 2^{3} \) |
$4.991637207$ |
$0.278816722$ |
4.208262259 |
\( -\frac{243980943049}{17210368} a + \frac{37738852723}{17210368} \) |
\( \bigl[0\) , \( a - 1\) , \( 0\) , \( 92 a + 976\) , \( -9324 a + 6188\bigr] \) |
${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(92a+976\right){x}-9324a+6188$ |
28672.9-b1 |
28672.9-b |
$2$ |
$2$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28672.9 |
\( 2^{12} \cdot 7 \) |
\( 2^{19} \cdot 7^{2} \) |
$3.07647$ |
$(a), (-a+1), (-2a+1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$2.733894296$ |
2.066629834 |
\( \frac{225856}{7} a - \frac{120192}{7} \) |
\( \bigl[0\) , \( a - 1\) , \( 0\) , \( -3 a - 11\) , \( 2 a + 18\bigr] \) |
${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-3a-11\right){x}+2a+18$ |
28672.9-b2 |
28672.9-b |
$2$ |
$2$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28672.9 |
\( 2^{12} \cdot 7 \) |
\( 2^{17} \cdot 7^{4} \) |
$3.07647$ |
$(a), (-a+1), (-2a+1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$2.733894296$ |
2.066629834 |
\( \frac{3728}{49} a - \frac{2672}{49} \) |
\( \bigl[0\) , \( a\) , \( 0\) , \( -3\) , \( 3 a + 2\bigr] \) |
${y}^2={x}^{3}+a{x}^{2}-3{x}+3a+2$ |
28672.9-c1 |
28672.9-c |
$2$ |
$2$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28672.9 |
\( 2^{12} \cdot 7 \) |
\( 2^{23} \cdot 7 \) |
$3.07647$ |
$(a), (-a+1), (-2a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.949735186$ |
$3.128064916$ |
4.491477793 |
\( -\frac{1072}{7} a + \frac{3280}{7} \) |
\( \bigl[0\) , \( a\) , \( 0\) , \( -2 a + 1\) , \( -3 a + 2\bigr] \) |
${y}^2={x}^{3}+a{x}^{2}+\left(-2a+1\right){x}-3a+2$ |
28672.9-c2 |
28672.9-c |
$2$ |
$2$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28672.9 |
\( 2^{12} \cdot 7 \) |
\( 2^{19} \cdot 7^{2} \) |
$3.07647$ |
$(a), (-a+1), (-2a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.474867593$ |
$3.128064916$ |
4.491477793 |
\( \frac{9244}{7} a + \frac{31692}{7} \) |
\( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 2 a + 4\) , \( -4 a + 8\bigr] \) |
${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(2a+4\right){x}-4a+8$ |
28672.9-d1 |
28672.9-d |
$2$ |
$2$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28672.9 |
\( 2^{12} \cdot 7 \) |
\( 2^{27} \cdot 7^{3} \) |
$3.07647$ |
$(a), (-a+1), (-2a+1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 3$ |
2B, 3Cn |
$1$ |
\( 2^{3} \) |
$1$ |
$1.562354823$ |
2.362058470 |
\( \frac{608715}{49} a - \frac{161001}{49} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 23 a - 21\) , \( -50 a + 6\bigr] \) |
${y}^2={x}^{3}+\left(23a-21\right){x}-50a+6$ |
28672.9-d2 |
28672.9-d |
$2$ |
$2$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28672.9 |
\( 2^{12} \cdot 7 \) |
\( 2^{21} \cdot 7^{6} \) |
$3.07647$ |
$(a), (-a+1), (-2a+1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 3$ |
2B, 3Cn |
$1$ |
\( 2^{3} \) |
$1$ |
$1.562354823$ |
2.362058470 |
\( -\frac{12393}{343} a - \frac{52461}{343} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 5 a - 9\) , \( -26 a + 22\bigr] \) |
${y}^2={x}^{3}+\left(5a-9\right){x}-26a+22$ |
28672.9-e1 |
28672.9-e |
$2$ |
$2$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28672.9 |
\( 2^{12} \cdot 7 \) |
\( 2^{28} \cdot 7^{2} \) |
$3.07647$ |
$(a), (-a+1), (-2a+1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$1.067882687$ |
1.614486868 |
\( -\frac{23725299}{896} a - \frac{4281957791}{896} \) |
\( \bigl[0\) , \( -a\) , \( 0\) , \( -120 a + 121\) , \( 149 a - 990\bigr] \) |
${y}^2={x}^{3}-a{x}^{2}+\left(-120a+121\right){x}+149a-990$ |
28672.9-e2 |
28672.9-e |
$2$ |
$2$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28672.9 |
\( 2^{12} \cdot 7 \) |
\( 2^{41} \cdot 7 \) |
$3.07647$ |
$(a), (-a+1), (-2a+1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$1.067882687$ |
1.614486868 |
\( \frac{182016677}{114688} a - \frac{7149735}{114688} \) |
\( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 4 a + 40\) , \( 56 a - 80\bigr] \) |
${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(4a+40\right){x}+56a-80$ |
28672.9-f1 |
28672.9-f |
$2$ |
$2$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28672.9 |
\( 2^{12} \cdot 7 \) |
\( 2^{20} \cdot 7^{2} \) |
$3.07647$ |
$(a), (-a+1), (-2a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.290751244$ |
$2.736244025$ |
4.811133086 |
\( \frac{11418}{7} a - \frac{127870}{7} \) |
\( \bigl[0\) , \( a\) , \( 0\) , \( 8 a - 7\) , \( -9 a - 6\bigr] \) |
${y}^2={x}^{3}+a{x}^{2}+\left(8a-7\right){x}-9a-6$ |
28672.9-f2 |
28672.9-f |
$2$ |
$2$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28672.9 |
\( 2^{12} \cdot 7 \) |
\( 2^{25} \cdot 7 \) |
$3.07647$ |
$(a), (-a+1), (-2a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.581502488$ |
$2.736244025$ |
4.811133086 |
\( \frac{4532}{7} a - \frac{5052}{7} \) |
\( \bigl[0\) , \( a - 1\) , \( 0\) , \( -4 a\) , \( 4 a - 4\bigr] \) |
${y}^2={x}^{3}+\left(a-1\right){x}^{2}-4a{x}+4a-4$ |
28672.9-g1 |
28672.9-g |
$2$ |
$2$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28672.9 |
\( 2^{12} \cdot 7 \) |
\( 2^{28} \cdot 7^{6} \) |
$3.07647$ |
$(a), (-a+1), (-2a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1.648402668$ |
$1.031781713$ |
5.142710798 |
\( \frac{31083}{98} a - \frac{338111}{686} \) |
\( \bigl[0\) , \( a - 1\) , \( 0\) , \( 20 a - 24\) , \( 84 a - 84\bigr] \) |
${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(20a-24\right){x}+84a-84$ |
28672.9-g2 |
28672.9-g |
$2$ |
$2$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28672.9 |
\( 2^{12} \cdot 7 \) |
\( 2^{23} \cdot 7^{3} \) |
$3.07647$ |
$(a), (-a+1), (-2a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.824201334$ |
$2.063563427$ |
5.142710798 |
\( -\frac{1104701}{196} a + \frac{620975}{196} \) |
\( \bigl[0\) , \( a - 1\) , \( 0\) , \( -10 a - 4\) , \( 16 a + 4\bigr] \) |
${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-10a-4\right){x}+16a+4$ |
28672.9-h1 |
28672.9-h |
$2$ |
$2$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28672.9 |
\( 2^{12} \cdot 7 \) |
\( 2^{26} \cdot 7^{2} \) |
$3.07647$ |
$(a), (-a+1), (-2a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.736289018$ |
$1.934816705$ |
4.307538015 |
\( \frac{11418}{7} a - \frac{127870}{7} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -9 a + 22\) , \( -21 a - 14\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+\left(-9a+22\right){x}-21a-14$ |
28672.9-h2 |
28672.9-h |
$2$ |
$2$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28672.9 |
\( 2^{12} \cdot 7 \) |
\( 2^{19} \cdot 7 \) |
$3.07647$ |
$(a), (-a+1), (-2a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.368144509$ |
$3.869633410$ |
4.307538015 |
\( \frac{4532}{7} a - \frac{5052}{7} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( a + 2\) , \( a - 2\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+\left(a+2\right){x}+a-2$ |
28672.9-i1 |
28672.9-i |
$2$ |
$2$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28672.9 |
\( 2^{12} \cdot 7 \) |
\( 2^{22} \cdot 7^{6} \) |
$3.07647$ |
$(a), (-a+1), (-2a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \cdot 3 \) |
$0.184934948$ |
$1.459159692$ |
4.895691373 |
\( \frac{31083}{98} a - \frac{338111}{686} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -11 a + 2\) , \( 21 a - 42\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+\left(-11a+2\right){x}+21a-42$ |
28672.9-i2 |
28672.9-i |
$2$ |
$2$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28672.9 |
\( 2^{12} \cdot 7 \) |
\( 2^{29} \cdot 7^{3} \) |
$3.07647$ |
$(a), (-a+1), (-2a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \cdot 3 \) |
$0.369869896$ |
$1.459159692$ |
4.895691373 |
\( -\frac{1104701}{196} a + \frac{620975}{196} \) |
\( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 24 a - 16\) , \( 28 a + 44\bigr] \) |
${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(24a-16\right){x}+28a+44$ |
28672.9-j1 |
28672.9-j |
$2$ |
$2$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28672.9 |
\( 2^{12} \cdot 7 \) |
\( 2^{34} \cdot 7^{2} \) |
$3.07647$ |
$(a), (-a+1), (-2a+1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$0.755107089$ |
2.283229226 |
\( -\frac{23725299}{896} a - \frac{4281957791}{896} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( 119 a - 362\) , \( 1169 a - 2310\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+\left(119a-362\right){x}+1169a-2310$ |
28672.9-j2 |
28672.9-j |
$2$ |
$2$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28672.9 |
\( 2^{12} \cdot 7 \) |
\( 2^{35} \cdot 7 \) |
$3.07647$ |
$(a), (-a+1), (-2a+1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$1.510214179$ |
2.283229226 |
\( \frac{182016677}{114688} a - \frac{7149735}{114688} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( 9 a - 22\) , \( 11 a - 34\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+\left(9a-22\right){x}+11a-34$ |
28672.9-k1 |
28672.9-k |
$2$ |
$2$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28672.9 |
\( 2^{12} \cdot 7 \) |
\( 2^{21} \cdot 7^{3} \) |
$3.07647$ |
$(a), (-a+1), (-2a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 3$ |
2B, 3Cn |
$1$ |
\( 2^{3} \cdot 3 \) |
$0.240387146$ |
$2.209503381$ |
4.818014847 |
\( \frac{608715}{49} a - \frac{161001}{49} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -11 a - 1\) , \( -18 a + 14\bigr] \) |
${y}^2={x}^{3}+\left(-11a-1\right){x}-18a+14$ |
28672.9-k2 |
28672.9-k |
$2$ |
$2$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28672.9 |
\( 2^{12} \cdot 7 \) |
\( 2^{27} \cdot 7^{6} \) |
$3.07647$ |
$(a), (-a+1), (-2a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 3$ |
2B, 3Cn |
$1$ |
\( 2^{3} \cdot 3 \) |
$0.480774292$ |
$1.104751690$ |
4.818014847 |
\( -\frac{12393}{343} a - \frac{52461}{343} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -a + 19\) , \( -74 a + 14\bigr] \) |
${y}^2={x}^{3}+\left(-a+19\right){x}-74a+14$ |
28672.9-l1 |
28672.9-l |
$4$ |
$10$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28672.9 |
\( 2^{12} \cdot 7 \) |
\( 2^{23} \cdot 7^{2} \) |
$3.07647$ |
$(a), (-a+1), (-2a+1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 5$ |
2B, 5B |
$1$ |
\( 2^{3} \) |
$1$ |
$1.971531948$ |
2.980676135 |
\( -\frac{1143001}{28} a - \frac{3214301}{28} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -19 a + 26\) , \( -3 a + 70\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+\left(-19a+26\right){x}-3a+70$ |
28672.9-l2 |
28672.9-l |
$4$ |
$10$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28672.9 |
\( 2^{12} \cdot 7 \) |
\( 2^{47} \cdot 7^{5} \) |
$3.07647$ |
$(a), (-a+1), (-2a+1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 5$ |
2B, 5B |
$1$ |
\( 2^{3} \cdot 5 \) |
$1$ |
$0.394306389$ |
2.980676135 |
\( \frac{581506766557}{359661568} a + \frac{72912600945}{359661568} \) |
\( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -240 a + 88\) , \( 988 a - 2452\bigr] \) |
${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-240a+88\right){x}+988a-2452$ |
28672.9-l3 |
28672.9-l |
$4$ |
$10$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28672.9 |
\( 2^{12} \cdot 7 \) |
\( 2^{31} \cdot 7 \) |
$3.07647$ |
$(a), (-a+1), (-2a+1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 5$ |
2B, 5B |
$1$ |
\( 2^{3} \) |
$1$ |
$1.971531948$ |
2.980676135 |
\( -\frac{5363}{112} a + \frac{52833}{112} \) |
\( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 8\) , \( -4 a + 12\bigr] \) |
${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+8{x}-4a+12$ |
28672.9-l4 |
28672.9-l |
$4$ |
$10$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28672.9 |
\( 2^{12} \cdot 7 \) |
\( 2^{31} \cdot 7^{10} \) |
$3.07647$ |
$(a), (-a+1), (-2a+1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 5$ |
2B, 5B |
$1$ |
\( 2^{3} \cdot 5 \) |
$1$ |
$0.394306389$ |
2.980676135 |
\( -\frac{243980943049}{17210368} a + \frac{37738852723}{17210368} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( 221 a - 534\) , \( -2723 a + 3878\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+\left(221a-534\right){x}-2723a+3878$ |
28672.9-m1 |
28672.9-m |
$2$ |
$2$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28672.9 |
\( 2^{12} \cdot 7 \) |
\( 2^{13} \cdot 7^{2} \) |
$3.07647$ |
$(a), (-a+1), (-2a+1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$3.866310392$ |
2.922655939 |
\( \frac{225856}{7} a - \frac{120192}{7} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -2 a + 7\) , \( 3 a + 4\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+\left(-2a+7\right){x}+3a+4$ |
28672.9-m2 |
28672.9-m |
$2$ |
$2$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28672.9 |
\( 2^{12} \cdot 7 \) |
\( 2^{23} \cdot 7^{4} \) |
$3.07647$ |
$(a), (-a+1), (-2a+1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$1.933155196$ |
2.922655939 |
\( \frac{3728}{49} a - \frac{2672}{49} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( 3 a + 2\) , \( 7 a + 14\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+\left(3a+2\right){x}+7a+14$ |
28672.9-n1 |
28672.9-n |
$2$ |
$2$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28672.9 |
\( 2^{12} \cdot 7 \) |
\( 2^{17} \cdot 7 \) |
$3.07647$ |
$(a), (-a+1), (-2a+1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$4.423751828$ |
3.344042057 |
\( -\frac{1072}{7} a + \frac{3280}{7} \) |
\( \bigl[0\) , \( a + 1\) , \( 0\) , \( 2 a\) , \( 0\bigr] \) |
${y}^2={x}^{3}+\left(a+1\right){x}^{2}+2a{x}$ |
28672.9-n2 |
28672.9-n |
$2$ |
$2$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
28672.9 |
\( 2^{12} \cdot 7 \) |
\( 2^{25} \cdot 7^{2} \) |
$3.07647$ |
$(a), (-a+1), (-2a+1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$2.211875914$ |
3.344042057 |
\( \frac{9244}{7} a + \frac{31692}{7} \) |
\( \bigl[0\) , \( a + 1\) , \( 0\) , \( -8 a\) , \( -16 a + 16\bigr] \) |
${y}^2={x}^{3}+\left(a+1\right){x}^{2}-8a{x}-16a+16$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.