Properties

Label 2.0.7.1-28224.1-d8
Base field \(\Q(\sqrt{-7}) \)
Conductor norm \( 28224 \)
CM no
Base change no
Q-curve yes
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-7}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, -1, 1]))
 
gp: K = nfinit(Polrev([2, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(27440a+10976\right){x}+298025a-3695510\)
sage: E = EllipticCurve([K([0,1]),K([-1,1]),K([0,0]),K([10976,27440]),K([-3695510,298025])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([-1,1]),Polrev([0,0]),Polrev([10976,27440]),Polrev([-3695510,298025])], K);
 
magma: E := EllipticCurve([K![0,1],K![-1,1],K![0,0],K![10976,27440],K![-3695510,298025]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z \oplus \Z/{2}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(-\frac{5241345}{64516} a + \frac{3145343}{32258} : -\frac{133275085}{16387064} a - \frac{663232753}{8193532} : 1\right)$$5.9435499617006352256378768785801314848$$\infty$
$\left(-\frac{325}{4} a + \frac{195}{2} : -\frac{65}{8} a - \frac{325}{4} : 1\right)$$0$$2$

Invariants

Conductor: $\frak{N}$ = \((105a+42)\) = \((a)^{6}\cdot(-2a+1)^{2}\cdot(3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 28224 \) = \(2^{6}\cdot7^{2}\cdot9\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: $\Delta$ = $-4285785a+27328182$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((-4285785a+27328182)\) = \((a)^{18}\cdot(-2a+1)^{10}\cdot(3)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 666442725064704 \) = \(2^{18}\cdot7^{10}\cdot9\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: $j$ = \( \frac{53297461115137}{147} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: $r$ = \(1\)
Regulator: $\mathrm{Reg}(E/K)$ \( 5.9435499617006352256378768785801314848 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 11.887099923401270451275753757160262970 \)
Global period: $\Omega(E/K)$ \( 0.230399750838868248594307052479998963260 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 8 \)  =  \(2^{2}\cdot2\cdot1\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(2\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 2.0703267530056385874065263702867169970 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$\displaystyle 2.070326753 \approx L'(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 0.230400 \cdot 11.887100 \cdot 8 } { {2^2 \cdot 2.645751} } \approx 2.070326753$

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There are 3 primes $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((a)\) \(2\) \(4\) \(I_{8}^{*}\) Additive \(-1\) \(6\) \(18\) \(0\)
\((-2a+1)\) \(7\) \(2\) \(I_{4}^{*}\) Additive \(-1\) \(2\) \(10\) \(4\)
\((3)\) \(9\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4, 8 and 16.
Its isogeny class 28224.1-d consists of curves linked by isogenies of degrees dividing 16.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.