Properties

Label 2.0.7.1-26896.2-a1
Base field \(\Q(\sqrt{-7}) \)
Conductor norm \( 26896 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-7}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, -1, 1]))
 
gp: K = nfinit(Polrev([2, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-20a+63\right){x}-77a-67\)
sage: E = EllipticCurve([K([0,1]),K([-1,1]),K([0,1]),K([63,-20]),K([-67,-77])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([-1,1]),Polrev([0,1]),Polrev([63,-20]),Polrev([-67,-77])], K);
 
magma: E := EllipticCurve([K![0,1],K![-1,1],K![0,1],K![63,-20],K![-67,-77]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((82a-164)\) = \((a)^{3}\cdot(-a+1)\cdot(41)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 26896 \) = \(2^{3}\cdot2\cdot1681\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-53792a+322752)\) = \((a)^{10}\cdot(-a+1)^{5}\cdot(41)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 92594536448 \) = \(2^{10}\cdot2^{5}\cdot1681^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{2602523791}{53792} a - \frac{1569591837}{26896} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{11}{4} a - \frac{1}{4} : -\frac{9}{8} a + \frac{11}{8} : 1\right)$
Height \(1.8633243144189971106543553747432902102\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{11}{4} a - \frac{1}{2} : -\frac{13}{8} a + \frac{11}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.8633243144189971106543553747432902102 \)
Period: \( 1.3272335918826433022349850767670624792 \)
Tamagawa product: \( 4 \)  =  \(2\cdot1\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 3.7389252910145710844686619210429721369 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a)\) \(2\) \(2\) \(III^{*}\) Additive \(1\) \(3\) \(10\) \(0\)
\((-a+1)\) \(2\) \(1\) \(I_{5}\) Non-split multiplicative \(1\) \(1\) \(5\) \(5\)
\((41)\) \(1681\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 26896.2-a consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.