Properties

Label 2.0.7.1-2500.2-b2
Base field \(\Q(\sqrt{-7}) \)
Conductor norm \( 2500 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 5 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-7}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, -1, 1]))
 
gp: K = nfinit(Polrev([2, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-3{x}+1\)
sage: E = EllipticCurve([K([1,0]),K([1,0]),K([1,0]),K([-3,0]),K([1,0])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([1,0]),Polrev([1,0]),Polrev([-3,0]),Polrev([1,0])], K);
 
magma: E := EllipticCurve([K![1,0],K![1,0],K![1,0],K![-3,0],K![1,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((50)\) = \((a)\cdot(-a+1)\cdot(5)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 2500 \) = \(2\cdot2\cdot25^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-800)\) = \((a)^{5}\cdot(-a+1)^{5}\cdot(5)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 640000 \) = \(2^{5}\cdot2^{5}\cdot25^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{121945}{32} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{1}{4} a + \frac{1}{4} : -\frac{3}{8} a + \frac{1}{8} : 1\right)$
Height \(0.73454693764387876804439717843432206178\)
Torsion structure: \(\Z/5\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-1 : -2 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.73454693764387876804439717843432206178 \)
Period: \( 4.2725002404569654263643326935944817542 \)
Tamagawa product: \( 25 \)  =  \(5\cdot5\cdot1\)
Torsion order: \(5\)
Leading coefficient: \( 4.7447421903725299910957781957909473626 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a)\) \(2\) \(5\) \(I_{5}\) Split multiplicative \(-1\) \(1\) \(5\) \(5\)
\((-a+1)\) \(2\) \(5\) \(I_{5}\) Split multiplicative \(-1\) \(1\) \(5\) \(5\)
\((5)\) \(25\) \(1\) \(II\) Additive \(1\) \(2\) \(2\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B
\(5\) 5B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3, 5 and 15.
Its isogeny class 2500.2-b consists of curves linked by isogenies of degrees dividing 15.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 50.b3
\(\Q\) 2450.bd3