Learn more

Refine search


Results (44 matches)

  Download to        
Label Class Base field Conductor norm Rank Torsion CM Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
23716.5-a1 23716.5-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $0.131842497$ $1.105108572$ 3.524449760 \( \frac{46830231}{234256} a + \frac{377324919}{234256} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( 21 a - 37\) , \( 7 a - 29\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(21a-37\right){x}+7a-29$
23716.5-a2 23716.5-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $0.131842497$ $1.105108572$ 3.524449760 \( -\frac{46830231}{234256} a + \frac{212077575}{117128} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -21 a - 16\) , \( -7 a - 22\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(-21a-16\right){x}-7a-22$
23716.5-a3 23716.5-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $2$ $\Z/2\Z$ $0.131842497$ $0.552554286$ 3.524449760 \( \frac{56046918875913}{857435524} a + \frac{9320189138181}{214358881} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -231 a - 86\) , \( 2079 a - 764\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(-231a-86\right){x}+2079a-764$
23716.5-a4 23716.5-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $2$ $\Z/2\Z$ $0.131842497$ $0.552554286$ 3.524449760 \( -\frac{56046918875913}{857435524} a + \frac{93327675428637}{857435524} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( 231 a - 317\) , \( -2079 a + 1315\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(231a-317\right){x}-2079a+1315$
23716.5-a5 23716.5-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $2$ $\Z/2\Z$ $0.527369991$ $1.105108572$ 3.524449760 \( \frac{14003310699}{30976} a + \frac{5238465399}{30976} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -63 a - 58\) , \( 371 a + 62\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(-63a-58\right){x}+371a+62$
23716.5-a6 23716.5-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $2$ $\Z/2\Z$ $0.527369991$ $1.105108572$ 3.524449760 \( -\frac{14003310699}{30976} a + \frac{9620888049}{15488} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( 63 a - 121\) , \( -371 a + 433\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(63a-121\right){x}-371a+433$
23716.5-b1 23716.5-b \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $0.660387214$ 0.998411621 \( \frac{428951306259}{507510784} a - \frac{1585065606849}{507510784} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( 9 a - 122\) , \( -39 a + 666\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(9a-122\right){x}-39a+666$
23716.5-b2 23716.5-b \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $0.660387214$ 0.998411621 \( -\frac{428951306259}{507510784} a - \frac{578057150295}{253755392} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -9 a - 113\) , \( 39 a + 627\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(-9a-113\right){x}+39a+627$
23716.5-c1 23716.5-c \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $1$ $\Z/3\Z$ $1.822390698$ $1.879991111$ 1.726581179 \( \frac{765625}{22} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -26\) , \( 46\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-26{x}+46$
23716.5-c2 23716.5-c \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $0.607463566$ $0.626663703$ 1.726581179 \( \frac{911871625}{10648} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -271\) , \( -1718\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-271{x}-1718$
23716.5-d1 23716.5-d \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $2$ $\Z/2\Z$ $0.094409938$ $3.108510495$ 3.549531310 \( \frac{1682825}{1936} a - \frac{3924721}{968} \) \( \bigl[1\) , \( a + 1\) , \( a\) , \( a - 6\) , \( -2 a + 4\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(a-6\right){x}-2a+4$
23716.5-d2 23716.5-d \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $2$ $\Z/2\Z$ $0.094409938$ $3.108510495$ 3.549531310 \( -\frac{1682825}{1936} a - \frac{6166617}{1936} \) \( \bigl[1\) , \( -a - 1\) , \( a\) , \( -6\) , \( 2 a + 8\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}-6{x}+2a+8$
23716.5-e1 23716.5-e \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $0.361596845$ 1.093366089 \( \frac{31504873455125}{519691042816} a + \frac{50524809992625}{259845521408} \) \( \bigl[1\) , \( a - 1\) , \( a\) , \( -129 a - 26\) , \( -294 a + 2776\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-129a-26\right){x}-294a+2776$
23716.5-e2 23716.5-e \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $0.361596845$ 1.093366089 \( -\frac{31504873455125}{519691042816} a + \frac{132554493440375}{519691042816} \) \( \bigl[1\) , \( -a\) , \( a + 1\) , \( 128 a - 155\) , \( 293 a + 2482\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(128a-155\right){x}+293a+2482$
23716.5-e3 23716.5-e \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $0.361596845$ 1.093366089 \( \frac{1133731711875}{959512576} a + \frac{6924008747375}{959512576} \) \( \bigl[1\) , \( -a - 1\) , \( a\) , \( -268 a - 236\) , \( 3000 a + 28\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-268a-236\right){x}+3000a+28$
23716.5-e4 23716.5-e \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $0.361596845$ 1.093366089 \( -\frac{1133731711875}{959512576} a + \frac{4028870229625}{479756288} \) \( \bigl[1\) , \( a + 1\) , \( a\) , \( 269 a - 504\) , \( -2732 a + 2524\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(269a-504\right){x}-2732a+2524$
23716.5-e5 23716.5-e \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $0.180798422$ 1.093366089 \( \frac{915988506230265125}{54875873536} a + \frac{2123510665930979625}{54875873536} \) \( \bigl[1\) , \( -a - 1\) , \( a\) , \( -4188 a - 3596\) , \( 192280 a + 13020\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-4188a-3596\right){x}+192280a+13020$
23716.5-e6 23716.5-e \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $0.180798422$ 1.093366089 \( -\frac{915988506230265125}{54875873536} a + \frac{1519749586080622375}{27437936768} \) \( \bigl[1\) , \( a + 1\) , \( a\) , \( 4189 a - 7784\) , \( -188092 a + 197516\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(4189a-7784\right){x}-188092a+197516$
23716.5-f1 23716.5-f \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $2.500935374$ $0.667368368$ 2.523359096 \( \frac{551516475321}{5632} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -625\) , \( 6173\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}-625{x}+6173$
23716.5-g1 23716.5-g \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.146504834$ $0.357301545$ 5.064980705 \( -\frac{26539759465005}{6716588032} a - \frac{31675945165289}{3358294016} \) \( \bigl[1\) , \( 1\) , \( a\) , \( 332 a - 529\) , \( -3964 a + 3071\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(332a-529\right){x}-3964a+3071$
23716.5-g2 23716.5-g \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.073252417$ $0.357301545$ 5.064980705 \( \frac{484480877855263}{384131114752} a - \frac{238867074550997}{192065557376} \) \( \bigl[1\) , \( a\) , \( 1\) , \( -269 a + 139\) , \( 1047 a - 3314\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(-269a+139\right){x}+1047a-3314$
23716.5-g3 23716.5-g \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.293009668$ $0.357301545$ 5.064980705 \( -\frac{1501567035128925}{3637837299712} a - \frac{947934887021657}{1818918649856} \) \( \bigl[1\) , \( -a + 1\) , \( 0\) , \( -116 a + 308\) , \( 1130 a + 2194\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-116a+308\right){x}+1130a+2194$
23716.5-g4 23716.5-g \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.293009668$ $0.178650772$ 5.064980705 \( \frac{17636942674068359}{183656704} a + \frac{6605911238021499}{91828352} \) \( \bigl[1\) , \( 1\) , \( a\) , \( 5442 a - 8579\) , \( -250518 a + 204349\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(5442a-8579\right){x}-250518a+204349$
23716.5-h1 23716.5-h \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.138709702$ $1.166887402$ 4.894144174 \( -\frac{13872889683}{123904} a - \frac{10410630165}{61952} \) \( \bigl[1\) , \( -1\) , \( a\) , \( -28 a + 101\) , \( 228 a + 63\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-28a+101\right){x}+228a+63$
23716.5-h2 23716.5-h \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.069354851$ $1.166887402$ 4.894144174 \( -\frac{8993570211}{126877696} a + \frac{61291846233}{63438848} \) \( \bigl[1\) , \( -1\) , \( a\) , \( -22 a + 14\) , \( 41 a + 6\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-22a+14\right){x}+41a+6$
23716.5-i1 23716.5-i \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $0.067658895$ $1.498873908$ 5.366226761 \( \frac{6332299625}{20614528} a - \frac{5352102233}{10307264} \) \( \bigl[1\) , \( -a + 1\) , \( 0\) , \( -9 a + 13\) , \( 11 a + 27\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-9a+13\right){x}+11a+27$
23716.5-j1 23716.5-j \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.146504834$ $0.357301545$ 5.064980705 \( \frac{26539759465005}{6716588032} a - \frac{89891649795583}{6716588032} \) \( \bigl[1\) , \( 1\) , \( a + 1\) , \( -333 a - 197\) , \( 3963 a - 893\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-333a-197\right){x}+3963a-893$
23716.5-j2 23716.5-j \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.293009668$ $0.357301545$ 5.064980705 \( \frac{1501567035128925}{3637837299712} a - \frac{3397436809172239}{3637837299712} \) \( \bigl[1\) , \( a\) , \( 0\) , \( 116 a + 192\) , \( -1130 a + 3324\bigr] \) ${y}^2+{x}{y}={x}^{3}+a{x}^{2}+\left(116a+192\right){x}-1130a+3324$
23716.5-j3 23716.5-j \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.073252417$ $0.357301545$ 5.064980705 \( -\frac{484480877855263}{384131114752} a + \frac{6746728753269}{384131114752} \) \( \bigl[1\) , \( -a + 1\) , \( 1\) , \( 269 a - 130\) , \( -1047 a - 2267\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(269a-130\right){x}-1047a-2267$
23716.5-j4 23716.5-j \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.293009668$ $0.178650772$ 5.064980705 \( -\frac{17636942674068359}{183656704} a + \frac{30848765150111357}{183656704} \) \( \bigl[1\) , \( 1\) , \( a + 1\) , \( -5443 a - 3137\) , \( 250517 a - 46169\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-5443a-3137\right){x}+250517a-46169$
23716.5-k1 23716.5-k \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.138709702$ $1.166887402$ 4.894144174 \( \frac{13872889683}{123904} a - \frac{34694150013}{123904} \) \( \bigl[1\) , \( -1\) , \( a + 1\) , \( 27 a + 73\) , \( -229 a + 291\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(27a+73\right){x}-229a+291$
23716.5-k2 23716.5-k \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.069354851$ $1.166887402$ 4.894144174 \( \frac{8993570211}{126877696} a + \frac{113590122255}{126877696} \) \( \bigl[1\) , \( -1\) , \( a + 1\) , \( 21 a - 8\) , \( -42 a + 47\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(21a-8\right){x}-42a+47$
23716.5-l1 23716.5-l \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $0.067658895$ $1.498873908$ 5.366226761 \( -\frac{6332299625}{20614528} a - \frac{4371904841}{20614528} \) \( \bigl[1\) , \( a\) , \( 0\) , \( 9 a + 4\) , \( -11 a + 38\bigr] \) ${y}^2+{x}{y}={x}^{3}+a{x}^{2}+\left(9a+4\right){x}-11a+38$
23716.5-m1 23716.5-m \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $1$ $\Z/3\Z$ $0.099026223$ $0.830278223$ 9.322794253 \( \frac{1071912625}{360448} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( -78\) , \( 139\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-78{x}+139$
23716.5-m2 23716.5-m \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $0.297078670$ $0.276759407$ 9.322794253 \( \frac{413160293352625}{42592} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( -5678\) , \( 162315\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-5678{x}+162315$
23716.5-n1 23716.5-n \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $0.195608169$ 4.731708082 \( \frac{30861084894361475}{6639980697856} a + \frac{6520918061639743}{6639980697856} \) \( \bigl[1\) , \( a - 1\) , \( a + 1\) , \( -1045 a - 454\) , \( -19530 a + 10059\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-1045a-454\right){x}-19530a+10059$
23716.5-n2 23716.5-n \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $0.195608169$ 4.731708082 \( -\frac{30861084894361475}{6639980697856} a + \frac{18691001478000609}{3319990348928} \) \( \bigl[1\) , \( -a\) , \( a\) , \( 1044 a - 1498\) , \( 19529 a - 9470\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(1044a-1498\right){x}+19529a-9470$
23716.5-o1 23716.5-o \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $1.857956067$ 5.617931086 \( \frac{34643161}{176} a - \frac{7276683}{176} \) \( \bigl[1\) , \( a\) , \( a\) , \( 28 a - 18\) , \( -47 a - 46\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(28a-18\right){x}-47a-46$
23716.5-o2 23716.5-o \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $1.857956067$ 5.617931086 \( \frac{704969}{484} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( 13\) , \( 13\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}+13{x}+13$
23716.5-o3 23716.5-o \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $0.928978033$ 5.617931086 \( \frac{59776471}{29282} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( -57\) , \( 41\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-57{x}+41$
23716.5-o4 23716.5-o \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $1.857956067$ 5.617931086 \( -\frac{34643161}{176} a + \frac{13683239}{88} \) \( \bigl[1\) , \( -a + 1\) , \( a + 1\) , \( -29 a + 10\) , \( 46 a - 93\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-29a+10\right){x}+46a-93$
23716.5-p1 23716.5-p \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $3.889152545$ 5.879845969 \( \frac{133125}{484} a + \frac{753875}{484} \) \( \bigl[1\) , \( a - 1\) , \( a + 1\) , \( a - 4\) , \( -2 a + 1\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(a-4\right){x}-2a+1$
23716.5-p2 23716.5-p \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $3.889152545$ 5.879845969 \( -\frac{133125}{484} a + \frac{221750}{121} \) \( \bigl[1\) , \( -a\) , \( a\) , \( -2 a - 2\) , \( a\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-2a-2\right){x}+a$
23716.5-q1 23716.5-q \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $0.234909178$ $3.241668097$ 10.36148524 \( \frac{415233}{88} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -6\) , \( -3\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-6{x}-3$
  Download to        

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.