Properties

Label 2.0.7.1-22400.2-j6
Base field \(\Q(\sqrt{-7}) \)
Conductor norm \( 22400 \)
CM no
Base change no
Q-curve yes
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-7}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, -1, 1]))
 
gp: K = nfinit(Polrev([2, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-1338a-534\right){x}-27519a+9713\)
sage: E = EllipticCurve([K([0,1]),K([-1,-1]),K([0,1]),K([-534,-1338]),K([9713,-27519])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([-1,-1]),Polrev([0,1]),Polrev([-534,-1338]),Polrev([9713,-27519])], K);
 
magma: E := EllipticCurve([K![0,1],K![-1,-1],K![0,1],K![-534,-1338],K![9713,-27519]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((110a-20)\) = \((a)^{6}\cdot(-a+1)\cdot(-2a+1)\cdot(5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 22400 \) = \(2^{6}\cdot2\cdot7\cdot25\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((10204250a-65067100)\) = \((a)^{19}\cdot(-a+1)\cdot(-2a+1)^{8}\cdot(5)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 3778019983360000 \) = \(2^{19}\cdot2\cdot7^{8}\cdot25^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{2121328796049}{120050} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{37}{4} a - \frac{37}{2} : \frac{107}{8} a - \frac{37}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 0.32703237264545432640506044002211494993 \)
Tamagawa product: \( 32 \)  =  \(2\cdot1\cdot2^{3}\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 1.9777058941423417973465712504052296190 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a)\) \(2\) \(2\) \(I_{9}^{*}\) Additive \(1\) \(6\) \(19\) \(1\)
\((-a+1)\) \(2\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((-2a+1)\) \(7\) \(8\) \(I_{8}\) Split multiplicative \(-1\) \(1\) \(8\) \(8\)
\((5)\) \(25\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 22400.2-j consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.