Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor norm at most 50000 over imaginary quadratic fields with absolute discriminant 7

Note: The completeness Only modular elliptic curves are included

Refine search


Results (12 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
16900.2-a1 16900.2-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/6\Z$ $\mathrm{SU}(2)$ $0.585232076$ $0.946074749$ 1.116100444 \( -\frac{217081801}{10562500} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -13\) , \( 156\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-13{x}+156$
16900.2-a2 16900.2-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.195077358$ $0.315358249$ 1.116100444 \( \frac{157376536199}{7722894400} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( 112\) , \( -4194\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+112{x}-4194$
16900.2-a3 16900.2-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.390154717$ $0.630716499$ 1.116100444 \( \frac{988345570681}{44994560} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -208\) , \( -1122\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-208{x}-1122$
16900.2-a4 16900.2-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/6\Z$ $\mathrm{SU}(2)$ $1.170464153$ $1.892149498$ 1.116100444 \( \frac{3803721481}{26000} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -33\) , \( 68\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-33{x}+68$
16900.2-b1 16900.2-b \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.106009335$ $2.549984976$ 4.086887690 \( -\frac{3542491}{260} a + \frac{185279897}{10400} \) \( \bigl[1\) , \( a - 1\) , \( 0\) , \( 6 a + 6\) , \( -4 a + 12\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(6a+6\right){x}-4a+12$
16900.2-c1 16900.2-c \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.106009335$ $2.549984976$ 4.086887690 \( \frac{3542491}{260} a + \frac{43580257}{10400} \) \( \bigl[1\) , \( -a\) , \( 0\) , \( -6 a + 12\) , \( 4 a + 8\bigr] \) ${y}^2+{x}{y}={x}^{3}-a{x}^{2}+\left(-6a+12\right){x}+4a+8$
16900.2-d1 16900.2-d \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.264724691$ $0.244864813$ 7.840103432 \( -\frac{48743122863889}{26406250000} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( -761\) , \( -11561\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-761{x}-11561$
16900.2-d2 16900.2-d \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.132362345$ $0.489729627$ 7.840103432 \( \frac{65787589563409}{10400000} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( -841\) , \( -9737\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-841{x}-9737$
16900.2-e1 16900.2-e \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $2.077762263$ $0.675991984$ 8.493923856 \( -\frac{32798729601}{71402500} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -67\) , \( -441\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-67{x}-441$
16900.2-e2 16900.2-e \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.519440565$ $2.703967938$ 8.493923856 \( \frac{33076161}{16640} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -7\) , \( -1\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-7{x}-1$
16900.2-e3 16900.2-e \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.038881131$ $1.351983969$ 8.493923856 \( \frac{72043225281}{67600} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -87\) , \( -289\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-87{x}-289$
16900.2-e4 16900.2-e \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.077762263$ $0.675991984$ 8.493923856 \( \frac{294889639316481}{260} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -1387\) , \( -19529\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-1387{x}-19529$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.