| Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
| 16900.2-a1 |
16900.2-a |
$4$ |
$6$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
16900.2 |
\( 2^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( 2^{4} \cdot 5^{12} \cdot 13^{4} \) |
$2.69562$ |
$(a), (-a+1), (5), (13)$ |
$1$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2^{4} \cdot 3 \) |
$0.585232076$ |
$0.946074749$ |
1.116100444 |
\( -\frac{217081801}{10562500} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -13\) , \( 156\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-13{x}+156$ |
| 16900.2-a2 |
16900.2-a |
$4$ |
$6$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
16900.2 |
\( 2^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( 2^{12} \cdot 5^{4} \cdot 13^{12} \) |
$2.69562$ |
$(a), (-a+1), (5), (13)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 2^{4} \cdot 3 \) |
$0.195077358$ |
$0.315358249$ |
1.116100444 |
\( \frac{157376536199}{7722894400} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( 112\) , \( -4194\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+112{x}-4194$ |
| 16900.2-a3 |
16900.2-a |
$4$ |
$6$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
16900.2 |
\( 2^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( 2^{24} \cdot 5^{2} \cdot 13^{6} \) |
$2.69562$ |
$(a), (-a+1), (5), (13)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 2^{2} \cdot 3 \) |
$0.390154717$ |
$0.630716499$ |
1.116100444 |
\( \frac{988345570681}{44994560} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -208\) , \( -1122\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-208{x}-1122$ |
| 16900.2-a4 |
16900.2-a |
$4$ |
$6$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
16900.2 |
\( 2^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( 2^{8} \cdot 5^{6} \cdot 13^{2} \) |
$2.69562$ |
$(a), (-a+1), (5), (13)$ |
$1$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2^{2} \cdot 3 \) |
$1.170464153$ |
$1.892149498$ |
1.116100444 |
\( \frac{3803721481}{26000} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -33\) , \( 68\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-33{x}+68$ |
| 16900.2-b1 |
16900.2-b |
$1$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
16900.2 |
\( 2^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( 2^{10} \cdot 5^{4} \cdot 13^{2} \) |
$2.69562$ |
$(a), (-a+1), (5), (13)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
|
|
$1$ |
\( 2 \cdot 5 \) |
$0.106009335$ |
$2.549984976$ |
4.086887690 |
\( -\frac{3542491}{260} a + \frac{185279897}{10400} \) |
\( \bigl[1\) , \( a - 1\) , \( 0\) , \( 6 a + 6\) , \( -4 a + 12\bigr] \) |
${y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(6a+6\right){x}-4a+12$ |
| 16900.2-c1 |
16900.2-c |
$1$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
16900.2 |
\( 2^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( 2^{10} \cdot 5^{4} \cdot 13^{2} \) |
$2.69562$ |
$(a), (-a+1), (5), (13)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
|
|
$1$ |
\( 2 \cdot 5 \) |
$0.106009335$ |
$2.549984976$ |
4.086887690 |
\( \frac{3542491}{260} a + \frac{43580257}{10400} \) |
\( \bigl[1\) , \( -a\) , \( 0\) , \( -6 a + 12\) , \( 4 a + 8\bigr] \) |
${y}^2+{x}{y}={x}^{3}-a{x}^{2}+\left(-6a+12\right){x}+4a+8$ |
| 16900.2-d1 |
16900.2-d |
$2$ |
$2$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
16900.2 |
\( 2^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( 2^{8} \cdot 5^{20} \cdot 13^{4} \) |
$2.69562$ |
$(a), (-a+1), (5), (13)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{6} \cdot 5 \) |
$0.264724691$ |
$0.244864813$ |
7.840103432 |
\( -\frac{48743122863889}{26406250000} \) |
\( \bigl[1\) , \( 1\) , \( 1\) , \( -761\) , \( -11561\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-761{x}-11561$ |
| 16900.2-d2 |
16900.2-d |
$2$ |
$2$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
16900.2 |
\( 2^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( 2^{16} \cdot 5^{10} \cdot 13^{2} \) |
$2.69562$ |
$(a), (-a+1), (5), (13)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{6} \cdot 5 \) |
$0.132362345$ |
$0.489729627$ |
7.840103432 |
\( \frac{65787589563409}{10400000} \) |
\( \bigl[1\) , \( 1\) , \( 1\) , \( -841\) , \( -9737\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-841{x}-9737$ |
| 16900.2-e1 |
16900.2-e |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
16900.2 |
\( 2^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( 2^{4} \cdot 5^{8} \cdot 13^{8} \) |
$2.69562$ |
$(a), (-a+1), (5), (13)$ |
$1$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{6} \) |
$2.077762263$ |
$0.675991984$ |
8.493923856 |
\( -\frac{32798729601}{71402500} \) |
\( \bigl[1\) , \( -1\) , \( 1\) , \( -67\) , \( -441\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-67{x}-441$ |
| 16900.2-e2 |
16900.2-e |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
16900.2 |
\( 2^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( 2^{16} \cdot 5^{2} \cdot 13^{2} \) |
$2.69562$ |
$(a), (-a+1), (5), (13)$ |
$1$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{6} \) |
$0.519440565$ |
$2.703967938$ |
8.493923856 |
\( \frac{33076161}{16640} \) |
\( \bigl[1\) , \( -1\) , \( 1\) , \( -7\) , \( -1\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-7{x}-1$ |
| 16900.2-e3 |
16900.2-e |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
16900.2 |
\( 2^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( 2^{8} \cdot 5^{4} \cdot 13^{4} \) |
$2.69562$ |
$(a), (-a+1), (5), (13)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$1.038881131$ |
$1.351983969$ |
8.493923856 |
\( \frac{72043225281}{67600} \) |
\( \bigl[1\) , \( -1\) , \( 1\) , \( -87\) , \( -289\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-87{x}-289$ |
| 16900.2-e4 |
16900.2-e |
$4$ |
$4$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
16900.2 |
\( 2^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( 2^{4} \cdot 5^{2} \cdot 13^{2} \) |
$2.69562$ |
$(a), (-a+1), (5), (13)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$4$ |
\( 2^{2} \) |
$2.077762263$ |
$0.675991984$ |
8.493923856 |
\( \frac{294889639316481}{260} \) |
\( \bigl[1\) , \( -1\) , \( 1\) , \( -1387\) , \( -19529\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-1387{x}-19529$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.