Properties

Label 2.0.7.1-12544.5-CMa1
Base field \(\Q(\sqrt{-7}) \)
Conductor norm \( 12544 \)
CM yes (\(-7\))
Base change yes
Q-curve yes
Torsion order \( 4 \)
Rank \( 2 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{-7}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 2 \); class number \(1\).

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, -1, 1]))
 
Copy content gp:K = nfinit(Polrev([2, -1, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -1, 1]);
 

Weierstrass equation

\({y}^2={x}^{3}-35{x}+98\)
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([0,0]),K([0,0]),K([0,0]),K([-35,0]),K([98,0])])
 
Copy content gp:E = ellinit([Polrev([0,0]),Polrev([0,0]),Polrev([0,0]),Polrev([-35,0]),Polrev([98,0])], K);
 
Copy content magma:E := EllipticCurve([K![0,0],K![0,0],K![0,0],K![-35,0],K![98,0]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z \oplus \Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(1 : -8 : 1\right)$$0.43158104789063939599289247250504465551$$\infty$
$\left(a - 4 : -14 : 1\right)$$0.86316209578127879198578494501008931103$$\infty$
$\left(-7 : 0 : 1\right)$$0$$2$
$\left(-a + 4 : 0 : 1\right)$$0$$2$

Invariants

Conductor: $\frak{N}$ = \((112)\) = \((a)^{4}\cdot(-a+1)^{4}\cdot(-2a+1)^{2}\)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 12544 \) = \(2^{4}\cdot2^{4}\cdot7^{2}\)
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: $\Delta$ = $-1404928$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((-1404928)\) = \((a)^{12}\cdot(-a+1)^{12}\cdot(-2a+1)^{6}\)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 1973822685184 \) = \(2^{12}\cdot2^{12}\cdot7^{6}\)
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: $j$ = \( -3375 \)
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z[(1+\sqrt{-7})/2]\)    (complex multiplication)
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z[(1+\sqrt{-7})/2]\)   
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{U}(1)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 2 \)
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: $r$ = \(2\)
Regulator: $\mathrm{Reg}(E/K)$ \( 0.32595885157216915771537791641303317225 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 1.30383540628867663086151166565213268900 \)
Global period: $\Omega(E/K)$ \( 2.4722523001412733682490984840921888222 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 64 \)  =  \(2^{2}\cdot2^{2}\cdot2^{2}\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(4\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 4.8733379720496633476074996934952393066 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$$\begin{aligned}4.873337972 \approx L^{(2)}(E/K,1)/2! & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 2.472252 \cdot 1.303835 \cdot 64 } { {4^2 \cdot 2.645751} } \\ & \approx 4.873337972 \end{aligned}$$

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is not semistable. There are 3 primes $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((a)\) \(2\) \(4\) \(I_{4}^{*}\) Additive \(-1\) \(4\) \(12\) \(0\)
\((-a+1)\) \(2\) \(4\) \(I_{4}^{*}\) Additive \(-1\) \(4\) \(12\) \(0\)
\((-2a+1)\) \(7\) \(4\) \(I_0^{*}\) Additive \(-1\) \(2\) \(6\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

The image is a Borel subgroup if \(p=7\), a split Cartan subgroup if \(\left(\frac{ -7 }{p}\right)=+1\) or a nonsplit Cartan subgroup if \(\left(\frac{ -7 }{p}\right)=-1\).

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies (excluding endomorphisms) of degree \(d\) for \(d=\) 2.
Its isogeny class 12544.5-CMa consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 784.f2
\(\Q\) 784.f4