Properties

Label 2.0.43.1-124.1-a2
Base field \(\Q(\sqrt{-43}) \)
Conductor norm \( 124 \)
CM no
Base change no
Q-curve no
Torsion order \( 3 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-43}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 11 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([11, -1, 1]))
 
gp: K = nfinit(Polrev([11, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![11, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+{y}={x}^3+\left(-a-1\right){x}\)
sage: E = EllipticCurve([K([1,1]),K([0,0]),K([1,0]),K([-1,-1]),K([0,0])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([0,0]),Polrev([1,0]),Polrev([-1,-1]),Polrev([0,0])], K);
 
magma: E := EllipticCurve([K![1,1],K![0,0],K![1,0],K![-1,-1],K![0,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2a+8)\) = \((2)\cdot(a+4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 124 \) = \(4\cdot31\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((4a+16)\) = \((2)^{2}\cdot(a+4)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 496 \) = \(4^{2}\cdot31\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{1172807}{124} a + \frac{363245}{124} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{43}{676} a + \frac{87}{676} : \frac{45}{2197} a - \frac{15903}{17576} : 1\right)$
Height \(3.6207505195155876813793890565947672824\)
Torsion structure: \(\Z/3\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(0 : -1 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 3.6207505195155876813793890565947672824 \)
Period: \( 6.8995981115265817776636707803867672927 \)
Tamagawa product: \( 2 \)  =  \(2\cdot1\)
Torsion order: \(3\)
Leading coefficient: \( 3.3863796534001789512814342624626761980 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2)\) \(4\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)
\((a+4)\) \(31\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3 and 9.
Its isogeny class 124.1-a consists of curves linked by isogenies of degrees dividing 9.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.