Learn more

Refine search


Results (12 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
800.1-a1 800.1-a \(\Q(\sqrt{-10}) \) \( 2^{5} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.808491475$ 1.143790438 \( -320 \) \( \bigl[0\) , \( a\) , \( 0\) , \( 30\) , \( 70 a\bigr] \) ${y}^2={x}^3+a{x}^2+30{x}+70a$
800.1-b1 800.1-b \(\Q(\sqrt{-10}) \) \( 2^{5} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.857218917$ $1.808491475$ 3.921915202 \( -320 \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 5\) , \( 5 a\bigr] \) ${y}^2={x}^3-a{x}^2+5{x}+5a$
800.1-c1 800.1-c \(\Q(\sqrt{-10}) \) \( 2^{5} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.318472330$ $5.319699904$ 2.142983515 \( -5000 \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -8\) , \( 8\bigr] \) ${y}^2={x}^3+{x}^2-8{x}+8$
800.1-d1 800.1-d \(\Q(\sqrt{-10}) \) \( 2^{5} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.218002349$ $5.319699904$ 4.400778950 \( -5000 \) \( \bigl[a\) , \( 0\) , \( a\) , \( 5\) , \( 5\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^3+5{x}+5$
800.1-e1 800.1-e \(\Q(\sqrt{-10}) \) \( 2^{5} \cdot 5^{2} \) $2$ $\Z/2\Z$ $-4$ $N(\mathrm{U}(1))$ $1.583123442$ $3.074676569$ 6.157071676 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 20\) , \( 0\bigr] \) ${y}^2={x}^3+20{x}$
800.1-e2 800.1-e \(\Q(\sqrt{-10}) \) \( 2^{5} \cdot 5^{2} \) $2$ $\Z/2\Z$ $-4$ $N(\mathrm{U}(1))$ $1.583123442$ $3.074676569$ 6.157071676 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -5\) , \( 0\bigr] \) ${y}^2={x}^3-5{x}$
800.1-f1 800.1-f \(\Q(\sqrt{-10}) \) \( 2^{5} \cdot 5^{2} \) $1$ $\Z/2\Z$ $-4$ $N(\mathrm{U}(1))$ $2.244048612$ $3.074676569$ 4.363768417 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 5\) , \( 0\bigr] \) ${y}^2={x}^3+5{x}$
800.1-f2 800.1-f \(\Q(\sqrt{-10}) \) \( 2^{5} \cdot 5^{2} \) $1$ $\Z/2\Z$ $-4$ $N(\mathrm{U}(1))$ $1.122024306$ $3.074676569$ 4.363768417 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -20\) , \( 0\bigr] \) ${y}^2={x}^3-20{x}$
800.1-g1 800.1-g \(\Q(\sqrt{-10}) \) \( 2^{5} \cdot 5^{2} \) $2$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.160665614$ $5.319699904$ 6.486662682 \( -5000 \) \( \bigl[a\) , \( -1\) , \( a\) , \( 7\) , \( 2\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^3-{x}^2+7{x}+2$
800.1-h1 800.1-h \(\Q(\sqrt{-10}) \) \( 2^{5} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $5.319699904$ 3.364473633 \( -5000 \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -8\) , \( -8\bigr] \) ${y}^2={x}^3-{x}^2-8{x}-8$
800.1-i1 800.1-i \(\Q(\sqrt{-10}) \) \( 2^{5} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.857218917$ $1.808491475$ 3.921915202 \( -320 \) \( \bigl[0\) , \( a\) , \( 0\) , \( 5\) , \( -5 a\bigr] \) ${y}^2={x}^3+a{x}^2+5{x}-5a$
800.1-j1 800.1-j \(\Q(\sqrt{-10}) \) \( 2^{5} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.808491475$ 1.143790438 \( -320 \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 30\) , \( -70 a\bigr] \) ${y}^2={x}^3-a{x}^2+30{x}-70a$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.