Properties

Label 2.0.40.1-49.1-a1
Base field \(\Q(\sqrt{-10}) \)
Conductor norm \( 49 \)
CM yes (\(-8\))
Base change no
Q-curve yes
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-10}) \)

Generator \(a\), with minimal polynomial \( x^{2} + 10 \); class number \(2\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([10, 0, 1]))
 
gp: K = nfinit(Polrev([10, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![10, 0, 1]);
 

Weierstrass equation

\({y}^2={x}^3+\left(-a+1\right){x}^2+\left(-4a+2\right){x}-2a-24\)
sage: E = EllipticCurve([K([0,0]),K([1,-1]),K([0,0]),K([2,-4]),K([-24,-2])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([1,-1]),Polrev([0,0]),Polrev([2,-4]),Polrev([-24,-2])], K);
 
magma: E := EllipticCurve([K![0,0],K![1,-1],K![0,0],K![2,-4],K![-24,-2]]);
 

This is not a global minimal model: it is minimal at all primes except \((2,a)\). No global minimal model exists.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z/{2}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(a + 1 : 0 : 1\right)$$0$$2$

Invariants

Conductor: $\frak{N}$ = \((2a-3)\) = \((7,a+2)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 49 \) = \(7^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: $\Delta$ = $-1664a+21312$
Discriminant ideal: $(\Delta)$ = \((-1664a+21312)\) = \((2,a)^{12}\cdot(7,a+2)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: $N(\Delta)$ = \( 481890304 \) = \(2^{12}\cdot7^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
Minimal discriminant: $\frak{D}_{\mathrm{min}}$ = \((-26a+333)\) = \((7,a+2)^{6}\)
Minimal discriminant norm: $N(\frak{D}_{\mathrm{min}})$ = \( 117649 \) = \(7^{6}\)
j-invariant: $j$ = \( 8000 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z[\sqrt{-2}]\)    (potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $N(\mathrm{U}(1))$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: $r$ = \(0\)
Regulator: $\mathrm{Reg}(E/K)$ = \( 1 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ = \( 1 \)
Global period: $\Omega(E/K)$ \( 9.5927284482321505788164473075837862026 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 4 \)  =  \(1\cdot2^{2}\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(2\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 1.5167435435953106738653716364463458336 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$\displaystyle 1.516743544 \approx L(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 9.592728 \cdot 1 \cdot 4 } { {2^2 \cdot 6.324555} } \approx 1.516743544$

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There is only one prime $\frak{p}$ of bad reduction. Primes of good reduction for the curve but which divide the discriminant of the model above (if any) are included.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((2,a)\) \(2\) \(1\) \(I_0\) Good \(1\) \(0\) \(0\) \(0\)
\((7,a+2)\) \(7\) \(4\) \(I_0^{*}\) Additive \(-1\) \(2\) \(6\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(5\) 5Nn.1.1.1

For all other primes \(p\), the image is a Borel subgroup if \(p=2\), the normalizer of a split Cartan subgroup if \(\left(\frac{ -2 }{p}\right)=+1\) or the normalizer of a nonsplit Cartan subgroup if \(\left(\frac{ -2 }{p}\right)=-1\).

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 49.1-a consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.