Base field \(\Q(\sqrt{-10}) \)
Generator \(a\), with minimal polynomial \( x^{2} + 10 \); class number \(2\).
Elliptic curves in class 44.2-a over \(\Q(\sqrt{-10}) \)
Isogeny class 44.2-a contains 2 curves linked by isogenies of degree 3.
Curve label | Weierstrass Coefficients |
---|---|
44.2-a1 | \( \bigl[a\) , \( -a + 1\) , \( 0\) , \( a - 2\) , \( 1\bigr] \) |
44.2-a2 | \( \bigl[a\) , \( -a + 1\) , \( 0\) , \( -9 a + 18\) , \( -4 a - 131\bigr] \) |
Rank
Rank: \( 0 \)Isogeny matrix
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)