Learn more

Refine search


Results (4 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
44.2-a1 44.2-a \(\Q(\sqrt{-10}) \) \( 2^{2} \cdot 11 \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $7.146887379$ 0.753348076 \( \frac{1372}{11} a + \frac{1372}{11} \) \( \bigl[a\) , \( -a + 1\) , \( 0\) , \( a - 2\) , \( 1\bigr] \) ${y}^2+a{x}{y}={x}^3+\left(-a+1\right){x}^2+\left(a-2\right){x}+1$
44.2-a2 44.2-a \(\Q(\sqrt{-10}) \) \( 2^{2} \cdot 11 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $2.382295793$ 0.753348076 \( \frac{3109029596}{1331} a + \frac{9318326932}{1331} \) \( \bigl[a\) , \( -a + 1\) , \( 0\) , \( -9 a + 18\) , \( -4 a - 131\bigr] \) ${y}^2+a{x}{y}={x}^3+\left(-a+1\right){x}^2+\left(-9a+18\right){x}-4a-131$
44.2-b1 44.2-b \(\Q(\sqrt{-10}) \) \( 2^{2} \cdot 11 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $7.146887379$ 2.260044229 \( \frac{1372}{11} a + \frac{1372}{11} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -1\) , \( -a + 2\bigr] \) ${y}^2={x}^3-a{x}^2-{x}-a+2$
44.2-b2 44.2-b \(\Q(\sqrt{-10}) \) \( 2^{2} \cdot 11 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $2.382295793$ 2.260044229 \( \frac{3109029596}{1331} a + \frac{9318326932}{1331} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -40 a + 79\) , \( -9 a + 578\bigr] \) ${y}^2={x}^3-a{x}^2+\left(-40a+79\right){x}-9a+578$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.