Properties

Label 2.0.40.1-405.1-a6
Base field \(\Q(\sqrt{-10}) \)
Conductor norm \( 405 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-10}) \)

Generator \(a\), with minimal polynomial \( x^{2} + 10 \); class number \(2\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([10, 0, 1]))
 
gp: K = nfinit(Polrev([10, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![10, 0, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+a{y}={x}^3+{x}^2-4855{x}-127937\)
sage: E = EllipticCurve([K([0,1]),K([1,0]),K([0,1]),K([-4855,0]),K([-127937,0])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([1,0]),Polrev([0,1]),Polrev([-4855,0]),Polrev([-127937,0])], K);
 
magma: E := EllipticCurve([K![0,1],K![1,0],K![0,1],K![-4855,0],K![-127937,0]]);
 

This is not a global minimal model: it is minimal at all primes except \((2,a)\). No global minimal model exists.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z/{2}\Z \oplus \Z/{2}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(-\frac{81}{2} : \frac{79}{4} a : 1\right)$$0$$2$
$\left(-39 : 19 a : 1\right)$$0$$2$

Invariants

Conductor: $\frak{N}$ = \((45,9a)\) = \((5,a)\cdot(3)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 405 \) = \(5\cdot9^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: $\Delta$ = $7652750400$
Discriminant ideal: $(\Delta)$ = \((7652750400)\) = \((2,a)^{12}\cdot(5,a)^{4}\cdot(3)^{14}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: $N(\Delta)$ = \( 58564588684700160000 \) = \(2^{12}\cdot5^{4}\cdot9^{14}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
Minimal discriminant: $\frak{D}_{\mathrm{min}}$ = \((119574225)\) = \((5,a)^{4}\cdot(3)^{14}\)
Minimal discriminant norm: $N(\frak{D}_{\mathrm{min}})$ = \( 14297995284350625 \) = \(5^{4}\cdot9^{14}\)
j-invariant: $j$ = \( \frac{272223782641}{164025} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: $r$ = \(0\)
Regulator: $\mathrm{Reg}(E/K)$ = \( 1 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ = \( 1 \)
Global period: $\Omega(E/K)$ \( 0.745233904205843033922247594037413907440 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 16 \)  =  \(1\cdot2^{2}\cdot2^{2}\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(4\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 1.8853092214961595636896424127677673084 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 16 \) (rounded)

BSD formula

$\displaystyle 1.885309221 \approx L(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 16 \cdot 0.745234 \cdot 1 \cdot 16 } { {4^2 \cdot 6.324555} } \approx 1.885309221$

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There are 2 primes $\frak{p}$ of bad reduction. Primes of good reduction for the curve but which divide the discriminant of the model above (if any) are included.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((2,a)\) \(2\) \(1\) \(I_0\) Good \(1\) \(0\) \(0\) \(0\)
\((5,a)\) \(5\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)
\((3)\) \(9\) \(4\) \(I_{8}^{*}\) Additive \(1\) \(2\) \(14\) \(8\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 405.1-a consists of curves linked by isogenies of degrees dividing 16.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 225.b2
\(\Q\) 2880.bc2