Learn more

Refine search


Results (16 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
405.1-a1 405.1-a \(\Q(\sqrt{-10}) \) \( 3^{4} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.186308476$ 1.885309221 \( -\frac{147281603041}{215233605} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -3955\) , \( -178157\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^3+{x}^2-3955{x}-178157$
405.1-a2 405.1-a \(\Q(\sqrt{-10}) \) \( 3^{4} \cdot 5 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $2.980935616$ 1.885309221 \( -\frac{1}{15} \) \( \bigl[a\) , \( 1\) , \( a\) , \( 5\) , \( 43\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^3+{x}^2+5{x}+43$
405.1-a3 405.1-a \(\Q(\sqrt{-10}) \) \( 3^{4} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.372616952$ 1.885309221 \( \frac{4733169839}{3515625} \) \( \bigl[a\) , \( 1\) , \( a\) , \( 1265\) , \( -9785\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^3+{x}^2+1265{x}-9785$
405.1-a4 405.1-a \(\Q(\sqrt{-10}) \) \( 3^{4} \cdot 5 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.745233904$ 1.885309221 \( \frac{111284641}{50625} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -355\) , \( -1037\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^3+{x}^2-355{x}-1037$
405.1-a5 405.1-a \(\Q(\sqrt{-10}) \) \( 3^{4} \cdot 5 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.490467808$ 1.885309221 \( \frac{13997521}{225} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -175\) , \( 1015\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^3+{x}^2-175{x}+1015$
405.1-a6 405.1-a \(\Q(\sqrt{-10}) \) \( 3^{4} \cdot 5 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.372616952$ 1.885309221 \( \frac{272223782641}{164025} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -4855\) , \( -127937\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^3+{x}^2-4855{x}-127937$
405.1-a7 405.1-a \(\Q(\sqrt{-10}) \) \( 3^{4} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.745233904$ 1.885309221 \( \frac{56667352321}{15} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -2875\) , \( 60955\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^3+{x}^2-2875{x}+60955$
405.1-a8 405.1-a \(\Q(\sqrt{-10}) \) \( 3^{4} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.186308476$ 1.885309221 \( \frac{1114544804970241}{405} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -77755\) , \( -8307317\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^3+{x}^2-77755{x}-8307317$
405.1-b1 405.1-b \(\Q(\sqrt{-10}) \) \( 3^{4} \cdot 5 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $5.036899059$ $0.186308476$ 4.748056122 \( -\frac{147281603041}{215233605} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -990\) , \( 22765\bigr] \) ${y}^2+{x}{y}={x}^3-{x}^2-990{x}+22765$
405.1-b2 405.1-b \(\Q(\sqrt{-10}) \) \( 3^{4} \cdot 5 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.259224764$ $2.980935616$ 4.748056122 \( -\frac{1}{15} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( 0\) , \( -5\bigr] \) ${y}^2+{x}{y}={x}^3-{x}^2-5$
405.1-b3 405.1-b \(\Q(\sqrt{-10}) \) \( 3^{4} \cdot 5 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $10.07379811$ $0.372616952$ 4.748056122 \( \frac{4733169839}{3515625} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( 315\) , \( 1066\bigr] \) ${y}^2+{x}{y}={x}^3-{x}^2+315{x}+1066$
405.1-b4 405.1-b \(\Q(\sqrt{-10}) \) \( 3^{4} \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $5.036899059$ $0.745233904$ 4.748056122 \( \frac{111284641}{50625} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -90\) , \( 175\bigr] \) ${y}^2+{x}{y}={x}^3-{x}^2-90{x}+175$
405.1-b5 405.1-b \(\Q(\sqrt{-10}) \) \( 3^{4} \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $2.518449529$ $1.490467808$ 4.748056122 \( \frac{13997521}{225} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -45\) , \( -104\bigr] \) ${y}^2+{x}{y}={x}^3-{x}^2-45{x}-104$
405.1-b6 405.1-b \(\Q(\sqrt{-10}) \) \( 3^{4} \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $10.07379811$ $0.372616952$ 4.748056122 \( \frac{272223782641}{164025} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -1215\) , \( 16600\bigr] \) ${y}^2+{x}{y}={x}^3-{x}^2-1215{x}+16600$
405.1-b7 405.1-b \(\Q(\sqrt{-10}) \) \( 3^{4} \cdot 5 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $5.036899059$ $0.745233904$ 4.748056122 \( \frac{56667352321}{15} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -720\) , \( -7259\bigr] \) ${y}^2+{x}{y}={x}^3-{x}^2-720{x}-7259$
405.1-b8 405.1-b \(\Q(\sqrt{-10}) \) \( 3^{4} \cdot 5 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $20.14759623$ $0.186308476$ 4.748056122 \( \frac{1114544804970241}{405} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -19440\) , \( 1048135\bigr] \) ${y}^2+{x}{y}={x}^3-{x}^2-19440{x}+1048135$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.