Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
40.1-a1
40.1-a
$4$
$4$
\(\Q(\sqrt{-10}) \)
$2$
$[0, 1]$
40.1
\( 2^{3} \cdot 5 \)
\( 2^{8} \cdot 5^{8} \)
$1.42129$
$(2,a), (5,a)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
$2$
2Cs
$1$
\( 2^{3} \)
$1$
$2.996888981$
1.895399015
\( \frac{237276}{625} \)
\( \bigl[a\) , \( 1\) , \( a\) , \( 9\) , \( 5\bigr] \)
${y}^2+a{x}{y}+a{y}={x}^3+{x}^2+9{x}+5$
40.1-a2
40.1-a
$4$
$4$
\(\Q(\sqrt{-10}) \)
$2$
$[0, 1]$
40.1
\( 2^{3} \cdot 5 \)
\( 2^{4} \cdot 5^{4} \)
$1.42129$
$(2,a), (5,a)$
0
$\Z/2\Z\oplus\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
$2$
2Cs
$4$
\( 2^{2} \)
$1$
$5.993777963$
1.895399015
\( \frac{148176}{25} \)
\( \bigl[a\) , \( 1\) , \( a\) , \( 4\) , \( 4\bigr] \)
${y}^2+a{x}{y}+a{y}={x}^3+{x}^2+4{x}+4$
40.1-a3
40.1-a
$4$
$4$
\(\Q(\sqrt{-10}) \)
$2$
$[0, 1]$
40.1
\( 2^{3} \cdot 5 \)
\( 2^{20} \cdot 5^{2} \)
$1.42129$
$(2,a), (5,a)$
0
$\Z/4\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
$2$
2Cs
$4$
\( 2^{2} \)
$1$
$5.993777963$
1.895399015
\( \frac{55296}{5} \)
\( \bigl[0\) , \( 0\) , \( 0\) , \( -8\) , \( -8\bigr] \)
${y}^2={x}^3-8{x}-8$
40.1-a4
40.1-a
$4$
$4$
\(\Q(\sqrt{-10}) \)
$2$
$[0, 1]$
40.1
\( 2^{3} \cdot 5 \)
\( 2^{8} \cdot 5^{2} \)
$1.42129$
$(2,a), (5,a)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
$2$
2Cs
$1$
\( 2^{3} \)
$1$
$2.996888981$
1.895399015
\( \frac{132304644}{5} \)
\( \bigl[a\) , \( 1\) , \( a\) , \( -21\) , \( 69\bigr] \)
${y}^2+a{x}{y}+a{y}={x}^3+{x}^2-21{x}+69$
40.1-b1
40.1-b
$4$
$4$
\(\Q(\sqrt{-10}) \)
$2$
$[0, 1]$
40.1
\( 2^{3} \cdot 5 \)
\( 2^{20} \cdot 5^{8} \)
$1.42129$
$(2,a), (5,a)$
0
$\Z/4\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
$2$
2Cs
$1$
\( 2^{4} \)
$1$
$2.996888981$
0.947699507
\( \frac{237276}{625} \)
\( \bigl[0\) , \( 0\) , \( 0\) , \( 13\) , \( -34\bigr] \)
${y}^2={x}^3+13{x}-34$
40.1-b2
40.1-b
$4$
$4$
\(\Q(\sqrt{-10}) \)
$2$
$[0, 1]$
40.1
\( 2^{3} \cdot 5 \)
\( 2^{16} \cdot 5^{4} \)
$1.42129$
$(2,a), (5,a)$
0
$\Z/2\Z\oplus\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
$2$
2Cs
$1$
\( 2^{3} \)
$1$
$5.993777963$
0.947699507
\( \frac{148176}{25} \)
\( \bigl[0\) , \( 0\) , \( 0\) , \( -7\) , \( -6\bigr] \)
${y}^2={x}^3-7{x}-6$
40.1-b3
40.1-b
$4$
$4$
\(\Q(\sqrt{-10}) \)
$2$
$[0, 1]$
40.1
\( 2^{3} \cdot 5 \)
\( 2^{8} \cdot 5^{2} \)
$1.42129$
$(2,a), (5,a)$
0
$\Z/4\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
$2$
2Cs
$1$
\( 2^{3} \)
$1$
$5.993777963$
0.947699507
\( \frac{55296}{5} \)
\( \bigl[0\) , \( 0\) , \( 0\) , \( -2\) , \( 1\bigr] \)
${y}^2={x}^3-2{x}+1$
40.1-b4
40.1-b
$4$
$4$
\(\Q(\sqrt{-10}) \)
$2$
$[0, 1]$
40.1
\( 2^{3} \cdot 5 \)
\( 2^{20} \cdot 5^{2} \)
$1.42129$
$(2,a), (5,a)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
$2$
2Cs
$1$
\( 2^{2} \)
$1$
$2.996888981$
0.947699507
\( \frac{132304644}{5} \)
\( \bigl[0\) , \( 0\) , \( 0\) , \( -107\) , \( -426\bigr] \)
${y}^2={x}^3-107{x}-426$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.