Properties

Label 2.0.40.1-20.1-b4
Base field \(\Q(\sqrt{-10}) \)
Conductor norm \( 20 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-10}) \)

Generator \(a\), with minimal polynomial \( x^{2} + 10 \); class number \(2\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([10, 0, 1]))
 
gp: K = nfinit(Polrev([10, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![10, 0, 1]);
 

Weierstrass equation

\({y}^2={x}^3+{x}^2-165{x}+763\)
sage: E = EllipticCurve([K([0,0]),K([1,0]),K([0,0]),K([-165,0]),K([763,0])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([1,0]),Polrev([0,0]),Polrev([-165,0]),Polrev([763,0])], K);
 
magma: E := EllipticCurve([K![0,0],K![1,0],K![0,0],K![-165,0],K![763,0]]);
 

This is not a global minimal model: it is minimal at all primes except \((2,a)\). No global minimal model exists.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z \oplus \Z/{2}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(11 : -20 : 1\right)$$0.27562460933944163663136069879434702139$$\infty$
$\left(7 : 0 : 1\right)$$0$$2$

Invariants

Conductor: $\frak{N}$ = \((10,2a)\) = \((2,a)^{2}\cdot(5,a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 20 \) = \(2^{2}\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: $\Delta$ = $128000$
Discriminant ideal: $(\Delta)$ = \((128000)\) = \((2,a)^{20}\cdot(5,a)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: $N(\Delta)$ = \( 16384000000 \) = \(2^{20}\cdot5^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
Minimal discriminant: $\frak{D}_{\mathrm{min}}$ = \((2000)\) = \((2,a)^{8}\cdot(5,a)^{6}\)
Minimal discriminant norm: $N(\frak{D}_{\mathrm{min}})$ = \( 4000000 \) = \(2^{8}\cdot5^{6}\)
j-invariant: $j$ = \( \frac{488095744}{125} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: $r$ = \(1\)
Regulator: $\mathrm{Reg}(E/K)$ \( 0.27562460933944163663136069879434702139 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 0.551249218678883273262721397588694042780 \)
Global period: $\Omega(E/K)$ \( 4.2820637712534201167782961301597664924 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 18 \)  =  \(3\cdot( 2 \cdot 3 )\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(2\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 1.6795140289007875968624869455797543056 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$\displaystyle 1.679514029 \approx L'(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 4.282064 \cdot 0.551249 \cdot 18 } { {2^2 \cdot 6.324555} } \approx 1.679514029$

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There are 2 primes $\frak{p}$ of bad reduction. Primes of good reduction for the curve but which divide the discriminant of the model above (if any) are included.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((2,a)\) \(2\) \(3\) \(IV^{*}\) Additive \(-1\) \(2\) \(8\) \(0\)
\((5,a)\) \(5\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 20.1-b consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 100.a1
\(\Q\) 320.a1