Learn more

Refine search


Results (16 matches)

  Download to        
Label Class Base field Conductor norm Rank Torsion CM Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
97344.2-a1 97344.2-a \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 3^{2} \cdot 13^{2} \) $2$ $\Z/2\Z$ $1.420273948$ $2.047453076$ 5.815888530 \( -\frac{4141815344}{85683} a - \frac{4891425528}{28561} \) \( \bigl[i + 1\) , \( i + 1\) , \( 0\) , \( 16 i + 24\) , \( -23 i + 44\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(i+1\right){x}^{2}+\left(16i+24\right){x}-23i+44$
97344.2-a2 97344.2-a \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 3^{2} \cdot 13^{2} \) $2$ $\Z/2\Z$ $1.420273948$ $2.047453076$ 5.815888530 \( \frac{4141815344}{85683} a - \frac{4891425528}{28561} \) \( \bigl[i + 1\) , \( i + 1\) , \( i + 1\) , \( -15 i + 24\) , \( 47 i + 59\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(i+1\right){x}^{2}+\left(-15i+24\right){x}+47i+59$
97344.2-a3 97344.2-a \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 3^{2} \cdot 13^{2} \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $0.355068487$ $2.047453076$ 5.815888530 \( \frac{778688}{1521} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( -8\) , \( -10 i\bigr] \) ${y}^2={x}^{3}-i{x}^{2}-8{x}-10i$
97344.2-a4 97344.2-a \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 3^{2} \cdot 13^{2} \) $2$ $\Z/2\Z$ $0.355068487$ $2.047453076$ 5.815888530 \( \frac{5088448}{1053} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -14\) , \( 12\bigr] \) ${y}^2={x}^{3}+{x}^{2}-14{x}+12$
97344.2-b1 97344.2-b \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 3^{2} \cdot 13^{2} \) $2$ $\Z/4\Z$ $2.728094279$ $0.717282506$ 5.870442907 \( -\frac{245314376}{6908733} \) \( \bigl[i + 1\) , \( -i\) , \( 0\) , \( 26\) , \( 357 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}-i{x}^{2}+26{x}+357i$
97344.2-b2 97344.2-b \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 3^{2} \cdot 13^{2} \) $2$ $\Z/4\Z$ $0.170505892$ $0.717282506$ 5.870442907 \( \frac{1360251712}{771147} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 92\) , \( 18 i\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+92{x}+18i$
97344.2-b3 97344.2-b \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 3^{2} \cdot 13^{2} \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $0.682023569$ $0.717282506$ 5.870442907 \( \frac{22235451328}{123201} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -234\) , \( 1296\bigr] \) ${y}^2={x}^{3}+{x}^{2}-234{x}+1296$
97344.2-b4 97344.2-b \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 3^{2} \cdot 13^{2} \) $2$ $\Z/2\Z$ $2.728094279$ $0.717282506$ 5.870442907 \( \frac{11339065490696}{351} \) \( \bigl[i + 1\) , \( -i\) , \( i + 1\) , \( -i + 936\) , \( 10867 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-i{x}^{2}+\left(-i+936\right){x}+10867i$
97344.2-c1 97344.2-c \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 3^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $0.320299800$ $0.711431615$ 4.557428092 \( \frac{1643032000}{767637} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -98\) , \( 132\bigr] \) ${y}^2={x}^{3}+{x}^{2}-98{x}+132$
97344.2-c2 97344.2-c \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 3^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $0.160149900$ $0.711431615$ 4.557428092 \( \frac{61162984000}{41067} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 328\) , \( -2398 i\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+328{x}-2398i$
97344.2-d1 97344.2-d \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 3^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $0.266481163$ $2.420020004$ 5.159117971 \( \frac{1000000}{507} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 8\) , \( -6 i\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+8{x}-6i$
97344.2-d2 97344.2-d \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 3^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $0.532962326$ $2.420020004$ 5.159117971 \( \frac{10648000}{117} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -18\) , \( -36\bigr] \) ${y}^2={x}^{3}+{x}^{2}-18{x}-36$
97344.2-e1 97344.2-e \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 3^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $0.250676465$ 4.010823441 \( -\frac{1036815206125907888}{209682766102329} a - \frac{132926443011554808}{23298085122481} \) \( \bigl[i + 1\) , \( i + 1\) , \( i + 1\) , \( -1035 i + 46\) , \( 9511 i - 9373\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(i+1\right){x}^{2}+\left(-1035i+46\right){x}+9511i-9373$
97344.2-e2 97344.2-e \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 3^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $0.250676465$ 4.010823441 \( \frac{1036815206125907888}{209682766102329} a - \frac{132926443011554808}{23298085122481} \) \( \bigl[i + 1\) , \( i + 1\) , \( 0\) , \( 1036 i + 46\) , \( -9465 i - 10408\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(i+1\right){x}^{2}+\left(1036i+46\right){x}-9465i-10408$
97344.2-e3 97344.2-e \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 3^{2} \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $0.250676465$ 4.010823441 \( -\frac{420526439488}{390971529} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 624\) , \( 9486 i\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+624{x}+9486i$
97344.2-e4 97344.2-e \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 3^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $0.250676465$ 4.010823441 \( \frac{42246001231552}{14414517} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -2902\) , \( -61132\bigr] \) ${y}^2={x}^{3}+{x}^{2}-2902{x}-61132$
  Download to        

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.