Learn more

Refine search


Results (18 matches)

  Download to          
Label Class Base field Conductor norm Rank Torsion CM Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
92416.1-a1 92416.1-a \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $1.644458105$ $0.603483608$ 1.984807025 \( -\frac{5698354821120}{19} a - \frac{4288599378432}{19} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -1080 i + 1186\) , \( 11040 i + 22126\bigr] \) ${y}^2={x}^{3}+\left(-1080i+1186\right){x}+11040i+22126$
92416.1-a2 92416.1-a \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $1.644458105$ $0.603483608$ 1.984807025 \( \frac{5698354821120}{19} a - \frac{4288599378432}{19} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 1080 i + 1186\) , \( 11040 i - 22126\bigr] \) ${y}^2={x}^{3}+\left(1080i+1186\right){x}+11040i-22126$
92416.1-a3 92416.1-a \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $0.328891621$ $0.603483608$ 1.984807025 \( -\frac{4741632}{2476099} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -14\) , \( 606\bigr] \) ${y}^2={x}^{3}-14{x}+606$
92416.1-b1 92416.1-b \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $1.365713112$ $0.467654504$ 5.109455107 \( -\frac{50357871050752}{19} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -3077\) , \( -64681\bigr] \) ${y}^2={x}^{3}-{x}^{2}-3077{x}-64681$
92416.1-b2 92416.1-b \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $0.151745901$ $1.402963512$ 5.109455107 \( -\frac{89915392}{6859} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -37\) , \( -81\bigr] \) ${y}^2={x}^{3}-{x}^{2}-37{x}-81$
92416.1-b3 92416.1-b \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $0.151745901$ $4.208890537$ 5.109455107 \( \frac{32768}{19} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 3\) , \( -1\bigr] \) ${y}^2={x}^{3}-{x}^{2}+3{x}-1$
92416.1-c1 92416.1-c \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $0.720811507$ $1.740066882$ 5.017040932 \( \frac{283645}{19} a + \frac{733644}{19} \) \( \bigl[0\) , \( i\) , \( 0\) , \( -12 i + 28\) , \( -44 i - 32\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+\left(-12i+28\right){x}-44i-32$
92416.1-d1 92416.1-d \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $0.472595983$ $0.852647549$ 6.447324923 \( -\frac{413493625}{152} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 248\) , \( 1424 i\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+248{x}+1424i$
92416.1-d2 92416.1-d \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $4.253363854$ $0.094738616$ 6.447324923 \( -\frac{69173457625}{2550136832} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 1368\) , \( -157168 i\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+1368{x}-157168i$
92416.1-d3 92416.1-d \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $0.472595983$ $0.284215849$ 6.447324923 \( \frac{94196375}{3511808} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( -152\) , \( 5776 i\bigr] \) ${y}^2={x}^{3}-i{x}^{2}-152{x}+5776i$
92416.1-e1 92416.1-e \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $0.177253355$ $2.303331491$ 6.532371780 \( -\frac{31250}{19} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 8\) , \( -16 i\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+8{x}-16i$
92416.1-f1 92416.1-f \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $0.225942131$ $2.981887921$ 5.389872907 \( \frac{27000}{19} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -5\) , \( -2 i\bigr] \) ${y}^2={x}^{3}-5{x}-2i$
92416.1-g1 92416.1-g \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $0.595835310$ $4.183446943$ 4.985290813 \( -\frac{13824}{19} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -2\) , \( -2\bigr] \) ${y}^2={x}^{3}-2{x}-2$
92416.1-h1 92416.1-h \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $2.415391886$ 2.415391886 \( -\frac{4194304}{19} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 21\) , \( 31 i\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+21{x}+31i$
92416.1-i1 92416.1-i \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $3.397222379$ 3.397222379 \( -\frac{1024}{19} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 1\) , \( 3 i\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+{x}+3i$
92416.1-j1 92416.1-j \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $0.720811507$ $1.740066882$ 5.017040932 \( -\frac{283645}{19} a + \frac{733644}{19} \) \( \bigl[0\) , \( i\) , \( 0\) , \( 12 i + 28\) , \( -44 i + 32\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+\left(12i+28\right){x}-44i+32$
92416.1-k1 92416.1-k \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $0.241263990$ 4.825279813 \( -\frac{37966934881}{4952198} \) \( \bigl[0\) , \( i\) , \( 0\) , \( 1120\) , \( -15604 i\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+1120{x}-15604i$
92416.1-k2 92416.1-k \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $1.206319953$ 4.825279813 \( -\frac{1}{608} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 0\) , \( -76 i\bigr] \) ${y}^2={x}^{3}-i{x}^{2}-76i$
  Download to          

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.