Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
9216.1-a1 |
9216.1-a |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
9216.1 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{14} \cdot 3^{12} \) |
$1.75107$ |
$(a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \cdot 3 \) |
$0.135844784$ |
$2.054849002$ |
1.674843116 |
\( -\frac{219488}{729} \) |
\( \bigl[0\) , \( -i\) , \( 0\) , \( 6\) , \( -18 i\bigr] \) |
${y}^2={x}^{3}-i{x}^{2}+6{x}-18i$ |
9216.1-a2 |
9216.1-a |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
9216.1 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{16} \cdot 3^{6} \) |
$1.75107$ |
$(a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2 \cdot 3 \) |
$0.271689568$ |
$2.054849002$ |
1.674843116 |
\( \frac{19056256}{27} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -35\) , \( 69\bigr] \) |
${y}^2={x}^{3}+{x}^{2}-35{x}+69$ |
9216.1-b1 |
9216.1-b |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
9216.1 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{22} \cdot 3^{4} \) |
$1.75107$ |
$(a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.229798166$ |
$2.452785702$ |
2.254582630 |
\( 4048 a - \frac{58624}{9} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -2 i + 11\) , \( 14 i + 7\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+\left(-2i+11\right){x}+14i+7$ |
9216.1-b2 |
9216.1-b |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
9216.1 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{14} \cdot 3^{2} \) |
$1.75107$ |
$(a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$0.459596333$ |
$4.905571404$ |
2.254582630 |
\( -\frac{6656}{3} a - 1536 \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -2 i + 1\) , \( 1\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+\left(-2i+1\right){x}+1$ |
9216.1-c1 |
9216.1-c |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
9216.1 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{28} \cdot 3^{16} \) |
$1.75107$ |
$(a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1.070944103$ |
$0.642644632$ |
2.752945917 |
\( \frac{207646}{6561} \) |
\( \bigl[0\) , \( i + 1\) , \( 0\) , \( 32 i\) , \( 360 i - 360\bigr] \) |
${y}^2={x}^{3}+\left(i+1\right){x}^{2}+32i{x}+360i-360$ |
9216.1-c2 |
9216.1-c |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
9216.1 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{14} \cdot 3^{2} \) |
$1.75107$ |
$(a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$0.535472051$ |
$5.141157056$ |
2.752945917 |
\( \frac{2048}{3} \) |
\( \bigl[0\) , \( -i - 1\) , \( 0\) , \( 2 i\) , \( 0\bigr] \) |
${y}^2={x}^{3}+\left(-i-1\right){x}^{2}+2i{x}$ |
9216.1-c3 |
9216.1-c |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
9216.1 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{22} \cdot 3^{4} \) |
$1.75107$ |
$(a+1), (3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{3} \) |
$1.070944103$ |
$2.570578528$ |
2.752945917 |
\( \frac{35152}{9} \) |
\( \bigl[0\) , \( i + 1\) , \( 0\) , \( -8 i\) , \( -8 i + 8\bigr] \) |
${y}^2={x}^{3}+\left(i+1\right){x}^{2}-8i{x}-8i+8$ |
9216.1-c4 |
9216.1-c |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
9216.1 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{26} \cdot 3^{8} \) |
$1.75107$ |
$(a+1), (3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{3} \) |
$2.141888207$ |
$1.285289264$ |
2.752945917 |
\( \frac{1556068}{81} \) |
\( \bigl[0\) , \( -i - 1\) , \( 0\) , \( -48 i\) , \( -72 i + 72\bigr] \) |
${y}^2={x}^{3}+\left(-i-1\right){x}^{2}-48i{x}-72i+72$ |
9216.1-c5 |
9216.1-c |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
9216.1 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{26} \cdot 3^{2} \) |
$1.75107$ |
$(a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$2.141888207$ |
$1.285289264$ |
2.752945917 |
\( \frac{28756228}{3} \) |
\( \bigl[0\) , \( i + 1\) , \( 0\) , \( -128 i\) , \( -440 i + 440\bigr] \) |
${y}^2={x}^{3}+\left(i+1\right){x}^{2}-128i{x}-440i+440$ |
9216.1-c6 |
9216.1-c |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
9216.1 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{28} \cdot 3^{4} \) |
$1.75107$ |
$(a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1.070944103$ |
$0.642644632$ |
2.752945917 |
\( \frac{3065617154}{9} \) |
\( \bigl[0\) , \( -i - 1\) , \( 0\) , \( -768 i\) , \( -5544 i + 5544\bigr] \) |
${y}^2={x}^{3}+\left(-i-1\right){x}^{2}-768i{x}-5544i+5544$ |
9216.1-d1 |
9216.1-d |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
9216.1 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{24} \cdot 3^{8} \) |
$1.75107$ |
$(a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$1.658422999$ |
1.658422999 |
\( \frac{97336}{81} \) |
\( \bigl[0\) , \( i - 1\) , \( 0\) , \( -16 i\) , \( 16 i + 16\bigr] \) |
${y}^2={x}^{3}+\left(i-1\right){x}^{2}-16i{x}+16i+16$ |
9216.1-d2 |
9216.1-d |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
9216.1 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{18} \cdot 3^{4} \) |
$1.75107$ |
$(a+1), (3)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{3} \) |
$1$ |
$3.316845999$ |
1.658422999 |
\( \frac{21952}{9} \) |
\( \bigl[0\) , \( -i + 1\) , \( 0\) , \( 4 i\) , \( 0\bigr] \) |
${y}^2={x}^{3}+\left(-i+1\right){x}^{2}+4i{x}$ |
9216.1-d3 |
9216.1-d |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
9216.1 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{18} \cdot 3^{2} \) |
$1.75107$ |
$(a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$3.316845999$ |
1.658422999 |
\( \frac{140608}{3} \) |
\( \bigl[0\) , \( i + 1\) , \( 0\) , \( -8 i\) , \( 4 i - 4\bigr] \) |
${y}^2={x}^{3}+\left(i+1\right){x}^{2}-8i{x}+4i-4$ |
9216.1-d4 |
9216.1-d |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
9216.1 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{24} \cdot 3^{2} \) |
$1.75107$ |
$(a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$1.658422999$ |
1.658422999 |
\( \frac{7301384}{3} \) |
\( \bigl[0\) , \( -i + 1\) , \( 0\) , \( 64 i\) , \( -120 i - 120\bigr] \) |
${y}^2={x}^{3}+\left(-i+1\right){x}^{2}+64i{x}-120i-120$ |
9216.1-e1 |
9216.1-e |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
9216.1 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{22} \cdot 3^{4} \) |
$1.75107$ |
$(a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.229798166$ |
$2.452785702$ |
2.254582630 |
\( -4048 a - \frac{58624}{9} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( 2 i + 11\) , \( -14 i + 7\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+\left(2i+11\right){x}-14i+7$ |
9216.1-e2 |
9216.1-e |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
9216.1 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{14} \cdot 3^{2} \) |
$1.75107$ |
$(a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$0.459596333$ |
$4.905571404$ |
2.254582630 |
\( \frac{6656}{3} a - 1536 \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( 2 i + 1\) , \( 1\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+\left(2i+1\right){x}+1$ |
9216.1-f1 |
9216.1-f |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
9216.1 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{14} \cdot 3^{4} \) |
$1.75107$ |
$(a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.319732820$ |
$4.292588069$ |
2.744962582 |
\( \frac{4000}{9} \) |
\( \bigl[0\) , \( -i\) , \( 0\) , \( -2\) , \( 2 i\bigr] \) |
${y}^2={x}^{3}-i{x}^{2}-2{x}+2i$ |
9216.1-f2 |
9216.1-f |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
9216.1 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{16} \cdot 3^{2} \) |
$1.75107$ |
$(a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$0.639465641$ |
$4.292588069$ |
2.744962582 |
\( \frac{16000}{3} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -3\) , \( -3\bigr] \) |
${y}^2={x}^{3}+{x}^{2}-3{x}-3$ |
9216.1-g1 |
9216.1-g |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
9216.1 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{14} \cdot 3^{4} \) |
$1.75107$ |
$(a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$4.292588069$ |
2.146294034 |
\( \frac{4000}{9} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( 2\) , \( -2\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+2{x}-2$ |
9216.1-g2 |
9216.1-g |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
9216.1 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{16} \cdot 3^{2} \) |
$1.75107$ |
$(a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$4.292588069$ |
2.146294034 |
\( \frac{16000}{3} \) |
\( \bigl[0\) , \( -i\) , \( 0\) , \( 3\) , \( -3 i\bigr] \) |
${y}^2={x}^{3}-i{x}^{2}+3{x}-3i$ |
9216.1-h1 |
9216.1-h |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
9216.1 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{22} \cdot 3^{4} \) |
$1.75107$ |
$(a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$2.452785702$ |
2.452785702 |
\( -4048 a - \frac{58624}{9} \) |
\( \bigl[0\) , \( -i\) , \( 0\) , \( -2 i - 11\) , \( 7 i + 14\bigr] \) |
${y}^2={x}^{3}-i{x}^{2}+\left(-2i-11\right){x}+7i+14$ |
9216.1-h2 |
9216.1-h |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
9216.1 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{14} \cdot 3^{2} \) |
$1.75107$ |
$(a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$4.905571404$ |
2.452785702 |
\( \frac{6656}{3} a - 1536 \) |
\( \bigl[0\) , \( i\) , \( 0\) , \( -2 i - 1\) , \( i\bigr] \) |
${y}^2={x}^{3}+i{x}^{2}+\left(-2i-1\right){x}+i$ |
9216.1-i1 |
9216.1-i |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
9216.1 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{24} \cdot 3^{8} \) |
$1.75107$ |
$(a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$1.658422999$ |
1.658422999 |
\( \frac{97336}{81} \) |
\( \bigl[0\) , \( -i - 1\) , \( 0\) , \( 16 i\) , \( -16 i + 16\bigr] \) |
${y}^2={x}^{3}+\left(-i-1\right){x}^{2}+16i{x}-16i+16$ |
9216.1-i2 |
9216.1-i |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
9216.1 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{18} \cdot 3^{4} \) |
$1.75107$ |
$(a+1), (3)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{3} \) |
$1$ |
$3.316845999$ |
1.658422999 |
\( \frac{21952}{9} \) |
\( \bigl[0\) , \( i + 1\) , \( 0\) , \( -4 i\) , \( 0\bigr] \) |
${y}^2={x}^{3}+\left(i+1\right){x}^{2}-4i{x}$ |
9216.1-i3 |
9216.1-i |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
9216.1 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{18} \cdot 3^{2} \) |
$1.75107$ |
$(a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$3.316845999$ |
1.658422999 |
\( \frac{140608}{3} \) |
\( \bigl[0\) , \( i - 1\) , \( 0\) , \( 8 i\) , \( 4 i + 4\bigr] \) |
${y}^2={x}^{3}+\left(i-1\right){x}^{2}+8i{x}+4i+4$ |
9216.1-i4 |
9216.1-i |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
9216.1 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{24} \cdot 3^{2} \) |
$1.75107$ |
$(a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$1.658422999$ |
1.658422999 |
\( \frac{7301384}{3} \) |
\( \bigl[0\) , \( i + 1\) , \( 0\) , \( -64 i\) , \( 120 i - 120\bigr] \) |
${y}^2={x}^{3}+\left(i+1\right){x}^{2}-64i{x}+120i-120$ |
9216.1-j1 |
9216.1-j |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
9216.1 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{28} \cdot 3^{16} \) |
$1.75107$ |
$(a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1.070944103$ |
$0.642644632$ |
2.752945917 |
\( \frac{207646}{6561} \) |
\( \bigl[0\) , \( -i + 1\) , \( 0\) , \( -32 i\) , \( -360 i - 360\bigr] \) |
${y}^2={x}^{3}+\left(-i+1\right){x}^{2}-32i{x}-360i-360$ |
9216.1-j2 |
9216.1-j |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
9216.1 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{14} \cdot 3^{2} \) |
$1.75107$ |
$(a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$0.535472051$ |
$5.141157056$ |
2.752945917 |
\( \frac{2048}{3} \) |
\( \bigl[0\) , \( i - 1\) , \( 0\) , \( -2 i\) , \( 0\bigr] \) |
${y}^2={x}^{3}+\left(i-1\right){x}^{2}-2i{x}$ |
9216.1-j3 |
9216.1-j |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
9216.1 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{22} \cdot 3^{4} \) |
$1.75107$ |
$(a+1), (3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{3} \) |
$1.070944103$ |
$2.570578528$ |
2.752945917 |
\( \frac{35152}{9} \) |
\( \bigl[0\) , \( -i + 1\) , \( 0\) , \( 8 i\) , \( 8 i + 8\bigr] \) |
${y}^2={x}^{3}+\left(-i+1\right){x}^{2}+8i{x}+8i+8$ |
9216.1-j4 |
9216.1-j |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
9216.1 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{26} \cdot 3^{8} \) |
$1.75107$ |
$(a+1), (3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{3} \) |
$2.141888207$ |
$1.285289264$ |
2.752945917 |
\( \frac{1556068}{81} \) |
\( \bigl[0\) , \( i - 1\) , \( 0\) , \( 48 i\) , \( 72 i + 72\bigr] \) |
${y}^2={x}^{3}+\left(i-1\right){x}^{2}+48i{x}+72i+72$ |
9216.1-j5 |
9216.1-j |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
9216.1 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{26} \cdot 3^{2} \) |
$1.75107$ |
$(a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$2.141888207$ |
$1.285289264$ |
2.752945917 |
\( \frac{28756228}{3} \) |
\( \bigl[0\) , \( -i + 1\) , \( 0\) , \( 128 i\) , \( 440 i + 440\bigr] \) |
${y}^2={x}^{3}+\left(-i+1\right){x}^{2}+128i{x}+440i+440$ |
9216.1-j6 |
9216.1-j |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
9216.1 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{28} \cdot 3^{4} \) |
$1.75107$ |
$(a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1.070944103$ |
$0.642644632$ |
2.752945917 |
\( \frac{3065617154}{9} \) |
\( \bigl[0\) , \( i - 1\) , \( 0\) , \( 768 i\) , \( 5544 i + 5544\bigr] \) |
${y}^2={x}^{3}+\left(i-1\right){x}^{2}+768i{x}+5544i+5544$ |
9216.1-k1 |
9216.1-k |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
9216.1 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{22} \cdot 3^{4} \) |
$1.75107$ |
$(a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$2.452785702$ |
2.452785702 |
\( 4048 a - \frac{58624}{9} \) |
\( \bigl[0\) , \( i\) , \( 0\) , \( 2 i - 11\) , \( -7 i + 14\bigr] \) |
${y}^2={x}^{3}+i{x}^{2}+\left(2i-11\right){x}-7i+14$ |
9216.1-k2 |
9216.1-k |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
9216.1 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{14} \cdot 3^{2} \) |
$1.75107$ |
$(a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$4.905571404$ |
2.452785702 |
\( -\frac{6656}{3} a - 1536 \) |
\( \bigl[0\) , \( -i\) , \( 0\) , \( 2 i - 1\) , \( -i\bigr] \) |
${y}^2={x}^{3}-i{x}^{2}+\left(2i-1\right){x}-i$ |
9216.1-l1 |
9216.1-l |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
9216.1 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{14} \cdot 3^{12} \) |
$1.75107$ |
$(a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2 \cdot 3 \) |
$1$ |
$2.054849002$ |
3.082273503 |
\( -\frac{219488}{729} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -6\) , \( 18\bigr] \) |
${y}^2={x}^{3}-{x}^{2}-6{x}+18$ |
9216.1-l2 |
9216.1-l |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
9216.1 |
\( 2^{10} \cdot 3^{2} \) |
\( 2^{16} \cdot 3^{6} \) |
$1.75107$ |
$(a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2 \cdot 3 \) |
$1$ |
$2.054849002$ |
3.082273503 |
\( \frac{19056256}{27} \) |
\( \bigl[0\) , \( -i\) , \( 0\) , \( 35\) , \( 69 i\bigr] \) |
${y}^2={x}^{3}-i{x}^{2}+35{x}+69i$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.