Learn more

Refine search


Results (36 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
9216.1-a1 9216.1-a \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.135844784$ $2.054849002$ 1.674843116 \( -\frac{219488}{729} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 6\) , \( -18 i\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+6{x}-18i$
9216.1-a2 9216.1-a \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.271689568$ $2.054849002$ 1.674843116 \( \frac{19056256}{27} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -35\) , \( 69\bigr] \) ${y}^2={x}^{3}+{x}^{2}-35{x}+69$
9216.1-b1 9216.1-b \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.229798166$ $2.452785702$ 2.254582630 \( 4048 a - \frac{58624}{9} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -2 i + 11\) , \( 14 i + 7\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(-2i+11\right){x}+14i+7$
9216.1-b2 9216.1-b \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.459596333$ $4.905571404$ 2.254582630 \( -\frac{6656}{3} a - 1536 \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -2 i + 1\) , \( 1\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-2i+1\right){x}+1$
9216.1-c1 9216.1-c \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.070944103$ $0.642644632$ 2.752945917 \( \frac{207646}{6561} \) \( \bigl[0\) , \( i + 1\) , \( 0\) , \( 32 i\) , \( 360 i - 360\bigr] \) ${y}^2={x}^{3}+\left(i+1\right){x}^{2}+32i{x}+360i-360$
9216.1-c2 9216.1-c \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.535472051$ $5.141157056$ 2.752945917 \( \frac{2048}{3} \) \( \bigl[0\) , \( -i - 1\) , \( 0\) , \( 2 i\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(-i-1\right){x}^{2}+2i{x}$
9216.1-c3 9216.1-c \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.070944103$ $2.570578528$ 2.752945917 \( \frac{35152}{9} \) \( \bigl[0\) , \( i + 1\) , \( 0\) , \( -8 i\) , \( -8 i + 8\bigr] \) ${y}^2={x}^{3}+\left(i+1\right){x}^{2}-8i{x}-8i+8$
9216.1-c4 9216.1-c \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $2.141888207$ $1.285289264$ 2.752945917 \( \frac{1556068}{81} \) \( \bigl[0\) , \( -i - 1\) , \( 0\) , \( -48 i\) , \( -72 i + 72\bigr] \) ${y}^2={x}^{3}+\left(-i-1\right){x}^{2}-48i{x}-72i+72$
9216.1-c5 9216.1-c \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.141888207$ $1.285289264$ 2.752945917 \( \frac{28756228}{3} \) \( \bigl[0\) , \( i + 1\) , \( 0\) , \( -128 i\) , \( -440 i + 440\bigr] \) ${y}^2={x}^{3}+\left(i+1\right){x}^{2}-128i{x}-440i+440$
9216.1-c6 9216.1-c \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.070944103$ $0.642644632$ 2.752945917 \( \frac{3065617154}{9} \) \( \bigl[0\) , \( -i - 1\) , \( 0\) , \( -768 i\) , \( -5544 i + 5544\bigr] \) ${y}^2={x}^{3}+\left(-i-1\right){x}^{2}-768i{x}-5544i+5544$
9216.1-d1 9216.1-d \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.658422999$ 1.658422999 \( \frac{97336}{81} \) \( \bigl[0\) , \( i - 1\) , \( 0\) , \( -16 i\) , \( 16 i + 16\bigr] \) ${y}^2={x}^{3}+\left(i-1\right){x}^{2}-16i{x}+16i+16$
9216.1-d2 9216.1-d \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.316845999$ 1.658422999 \( \frac{21952}{9} \) \( \bigl[0\) , \( -i + 1\) , \( 0\) , \( 4 i\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(-i+1\right){x}^{2}+4i{x}$
9216.1-d3 9216.1-d \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.316845999$ 1.658422999 \( \frac{140608}{3} \) \( \bigl[0\) , \( i + 1\) , \( 0\) , \( -8 i\) , \( 4 i - 4\bigr] \) ${y}^2={x}^{3}+\left(i+1\right){x}^{2}-8i{x}+4i-4$
9216.1-d4 9216.1-d \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.658422999$ 1.658422999 \( \frac{7301384}{3} \) \( \bigl[0\) , \( -i + 1\) , \( 0\) , \( 64 i\) , \( -120 i - 120\bigr] \) ${y}^2={x}^{3}+\left(-i+1\right){x}^{2}+64i{x}-120i-120$
9216.1-e1 9216.1-e \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.229798166$ $2.452785702$ 2.254582630 \( -4048 a - \frac{58624}{9} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 2 i + 11\) , \( -14 i + 7\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(2i+11\right){x}-14i+7$
9216.1-e2 9216.1-e \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.459596333$ $4.905571404$ 2.254582630 \( \frac{6656}{3} a - 1536 \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 2 i + 1\) , \( 1\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(2i+1\right){x}+1$
9216.1-f1 9216.1-f \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.319732820$ $4.292588069$ 2.744962582 \( \frac{4000}{9} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( -2\) , \( 2 i\bigr] \) ${y}^2={x}^{3}-i{x}^{2}-2{x}+2i$
9216.1-f2 9216.1-f \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.639465641$ $4.292588069$ 2.744962582 \( \frac{16000}{3} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -3\) , \( -3\bigr] \) ${y}^2={x}^{3}+{x}^{2}-3{x}-3$
9216.1-g1 9216.1-g \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.292588069$ 2.146294034 \( \frac{4000}{9} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 2\) , \( -2\bigr] \) ${y}^2={x}^{3}-{x}^{2}+2{x}-2$
9216.1-g2 9216.1-g \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.292588069$ 2.146294034 \( \frac{16000}{3} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 3\) , \( -3 i\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+3{x}-3i$
9216.1-h1 9216.1-h \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.452785702$ 2.452785702 \( -4048 a - \frac{58624}{9} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( -2 i - 11\) , \( 7 i + 14\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+\left(-2i-11\right){x}+7i+14$
9216.1-h2 9216.1-h \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.905571404$ 2.452785702 \( \frac{6656}{3} a - 1536 \) \( \bigl[0\) , \( i\) , \( 0\) , \( -2 i - 1\) , \( i\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+\left(-2i-1\right){x}+i$
9216.1-i1 9216.1-i \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.658422999$ 1.658422999 \( \frac{97336}{81} \) \( \bigl[0\) , \( -i - 1\) , \( 0\) , \( 16 i\) , \( -16 i + 16\bigr] \) ${y}^2={x}^{3}+\left(-i-1\right){x}^{2}+16i{x}-16i+16$
9216.1-i2 9216.1-i \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.316845999$ 1.658422999 \( \frac{21952}{9} \) \( \bigl[0\) , \( i + 1\) , \( 0\) , \( -4 i\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(i+1\right){x}^{2}-4i{x}$
9216.1-i3 9216.1-i \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.316845999$ 1.658422999 \( \frac{140608}{3} \) \( \bigl[0\) , \( i - 1\) , \( 0\) , \( 8 i\) , \( 4 i + 4\bigr] \) ${y}^2={x}^{3}+\left(i-1\right){x}^{2}+8i{x}+4i+4$
9216.1-i4 9216.1-i \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.658422999$ 1.658422999 \( \frac{7301384}{3} \) \( \bigl[0\) , \( i + 1\) , \( 0\) , \( -64 i\) , \( 120 i - 120\bigr] \) ${y}^2={x}^{3}+\left(i+1\right){x}^{2}-64i{x}+120i-120$
9216.1-j1 9216.1-j \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.070944103$ $0.642644632$ 2.752945917 \( \frac{207646}{6561} \) \( \bigl[0\) , \( -i + 1\) , \( 0\) , \( -32 i\) , \( -360 i - 360\bigr] \) ${y}^2={x}^{3}+\left(-i+1\right){x}^{2}-32i{x}-360i-360$
9216.1-j2 9216.1-j \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.535472051$ $5.141157056$ 2.752945917 \( \frac{2048}{3} \) \( \bigl[0\) , \( i - 1\) , \( 0\) , \( -2 i\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(i-1\right){x}^{2}-2i{x}$
9216.1-j3 9216.1-j \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.070944103$ $2.570578528$ 2.752945917 \( \frac{35152}{9} \) \( \bigl[0\) , \( -i + 1\) , \( 0\) , \( 8 i\) , \( 8 i + 8\bigr] \) ${y}^2={x}^{3}+\left(-i+1\right){x}^{2}+8i{x}+8i+8$
9216.1-j4 9216.1-j \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $2.141888207$ $1.285289264$ 2.752945917 \( \frac{1556068}{81} \) \( \bigl[0\) , \( i - 1\) , \( 0\) , \( 48 i\) , \( 72 i + 72\bigr] \) ${y}^2={x}^{3}+\left(i-1\right){x}^{2}+48i{x}+72i+72$
9216.1-j5 9216.1-j \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.141888207$ $1.285289264$ 2.752945917 \( \frac{28756228}{3} \) \( \bigl[0\) , \( -i + 1\) , \( 0\) , \( 128 i\) , \( 440 i + 440\bigr] \) ${y}^2={x}^{3}+\left(-i+1\right){x}^{2}+128i{x}+440i+440$
9216.1-j6 9216.1-j \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.070944103$ $0.642644632$ 2.752945917 \( \frac{3065617154}{9} \) \( \bigl[0\) , \( i - 1\) , \( 0\) , \( 768 i\) , \( 5544 i + 5544\bigr] \) ${y}^2={x}^{3}+\left(i-1\right){x}^{2}+768i{x}+5544i+5544$
9216.1-k1 9216.1-k \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.452785702$ 2.452785702 \( 4048 a - \frac{58624}{9} \) \( \bigl[0\) , \( i\) , \( 0\) , \( 2 i - 11\) , \( -7 i + 14\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+\left(2i-11\right){x}-7i+14$
9216.1-k2 9216.1-k \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.905571404$ 2.452785702 \( -\frac{6656}{3} a - 1536 \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 2 i - 1\) , \( -i\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+\left(2i-1\right){x}-i$
9216.1-l1 9216.1-l \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.054849002$ 3.082273503 \( -\frac{219488}{729} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -6\) , \( 18\bigr] \) ${y}^2={x}^{3}-{x}^{2}-6{x}+18$
9216.1-l2 9216.1-l \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.054849002$ 3.082273503 \( \frac{19056256}{27} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 35\) , \( 69 i\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+35{x}+69i$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.