Properties

Label 2.0.4.1-88200.2-k3
Base field \(\Q(\sqrt{-1}) \)
Conductor norm \( 88200 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 8 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-1}) \)

Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))
 
gp: K = nfinit(Polrev([1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i+430\right){x}-2013i\)
sage: E = EllipticCurve([K([1,1]),K([0,0]),K([1,1]),K([430,-1]),K([0,-2013])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([0,0]),Polrev([1,1]),Polrev([430,-1]),Polrev([0,-2013])], K);
 
magma: E := EllipticCurve([K![1,1],K![0,0],K![1,1],K![430,-1],K![0,-2013]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((210i+210)\) = \((i+1)^{3}\cdot(-i-2)\cdot(2i+1)\cdot(3)\cdot(7)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 88200 \) = \(2^{3}\cdot5\cdot5\cdot9\cdot49\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-3214890000)\) = \((i+1)^{8}\cdot(-i-2)^{4}\cdot(2i+1)^{4}\cdot(3)^{8}\cdot(7)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 10335517712100000000 \) = \(2^{8}\cdot5^{4}\cdot5^{4}\cdot9^{8}\cdot49^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{549871953124}{200930625} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(355 i : -4903 i + 4902 : 1\right)$
Height \(0.90235265253427236350884992327083544474\)
Torsion structure: \(\Z/2\Z\oplus\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(5 i : -3 i + 2 : 1\right)$ $\left(-5 i : 47 i - 48 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.90235265253427236350884992327083544474 \)
Period: \( 0.35021640476613925993084015544661534687 \)
Tamagawa product: \( 512 \)  =  \(2\cdot2^{2}\cdot2^{2}\cdot2^{3}\cdot2\)
Torsion order: \(8\)
Leading coefficient: \( 5.0562992288278743570222116214256736042 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((i+1)\) \(2\) \(2\) \(I_{1}^{*}\) Additive \(1\) \(3\) \(8\) \(0\)
\((-i-2)\) \(5\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)
\((2i+1)\) \(5\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)
\((3)\) \(9\) \(8\) \(I_{8}\) Split multiplicative \(-1\) \(1\) \(8\) \(8\)
\((7)\) \(49\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 88200.2-k consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 840.f2
\(\Q\) 1680.p2