Learn more

Refine search


Results (16 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
8100.2-a1 8100.2-a \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 3^{4} \cdot 5^{2} \) $1$ $\Z/6\Z$ $\mathrm{SU}(2)$ $0.400741926$ $1.635871764$ 2.622249606 \( -\frac{42660324}{15625} a + \frac{45166032}{15625} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( -21 i + 3\) , \( -20 i + 35\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-21i+3\right){x}-20i+35$
8100.2-a2 8100.2-a \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 3^{4} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.202225778$ $0.545290588$ 2.622249606 \( \frac{42660324}{15625} a + \frac{45166032}{15625} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 189 i + 33\) , \( 604 i + 567\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(189i+33\right){x}+604i+567$
8100.2-a3 8100.2-a \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 3^{4} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.404451556$ $1.090581176$ 2.622249606 \( -\frac{1556928}{125} a + \frac{930096}{125} \) \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( 53 i + 33\) , \( -4 i + 162\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(53i+33\right){x}-4i+162$
8100.2-a4 8100.2-a \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 3^{4} \cdot 5^{2} \) $1$ $\Z/6\Z$ $\mathrm{SU}(2)$ $0.801483852$ $3.271743528$ 2.622249606 \( \frac{1556928}{125} a + \frac{930096}{125} \) \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -7 i + 3\) , \( 2 i + 10\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-7i+3\right){x}+2i+10$
8100.2-b1 8100.2-b \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 3^{4} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.202225778$ $0.545290588$ 2.622249606 \( -\frac{42660324}{15625} a + \frac{45166032}{15625} \) \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -190 i + 33\) , \( -571 i + 756\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-190i+33\right){x}-571i+756$
8100.2-b2 8100.2-b \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 3^{4} \cdot 5^{2} \) $1$ $\Z/6\Z$ $\mathrm{SU}(2)$ $0.400741926$ $1.635871764$ 2.622249606 \( \frac{42660324}{15625} a + \frac{45166032}{15625} \) \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( 20 i + 3\) , \( 23 i + 14\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(20i+3\right){x}+23i+14$
8100.2-b3 8100.2-b \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 3^{4} \cdot 5^{2} \) $1$ $\Z/6\Z$ $\mathrm{SU}(2)$ $0.801483852$ $3.271743528$ 2.622249606 \( -\frac{1556928}{125} a + \frac{930096}{125} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 6 i + 3\) , \( i + 4\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(6i+3\right){x}+i+4$
8100.2-b4 8100.2-b \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 3^{4} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.404451556$ $1.090581176$ 2.622249606 \( \frac{1556928}{125} a + \frac{930096}{125} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( -54 i + 33\) , \( 37 i + 216\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-54i+33\right){x}+37i+216$
8100.2-c1 8100.2-c \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 3^{4} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.070515942$ 2.141031885 \( -\frac{59648644}{625} a - \frac{119744792}{625} \) \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( 44 i - 99\) , \( -311 i + 324\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(44i-99\right){x}-311i+324$
8100.2-c2 8100.2-c \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 3^{4} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.070515942$ 2.141031885 \( \frac{59648644}{625} a - \frac{119744792}{625} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( -45 i - 99\) , \( 212 i + 369\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-45i-99\right){x}+212i+369$
8100.2-c3 8100.2-c \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 3^{4} \cdot 5^{2} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $0.356838647$ 2.141031885 \( -\frac{893935595564}{244140625} a - \frac{1336401187352}{244140625} \) \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( 494 i - 9\) , \( 3199 i + 3186\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(494i-9\right){x}+3199i+3186$
8100.2-c4 8100.2-c \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 3^{4} \cdot 5^{2} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $0.356838647$ 2.141031885 \( \frac{893935595564}{244140625} a - \frac{1336401187352}{244140625} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( -495 i - 9\) , \( -3208 i + 3681\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-495i-9\right){x}-3208i+3681$
8100.2-c5 8100.2-c \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 3^{4} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $0.713677295$ 2.141031885 \( -\frac{20720464}{15625} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 81\) , \( -391 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+81{x}-391i$
8100.2-c6 8100.2-c \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 3^{4} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.141031885$ 2.141031885 \( \frac{21296}{25} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( -9\) , \( 5 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}-9{x}+5i$
8100.2-c7 8100.2-c \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 3^{4} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.141031885$ 2.141031885 \( \frac{16384}{5} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -12\) , \( -11\bigr] \) ${y}^2={x}^{3}-12{x}-11$
8100.2-c8 8100.2-c \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 3^{4} \cdot 5^{2} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $0.713677295$ 2.141031885 \( \frac{488095744}{125} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -372\) , \( 2761\bigr] \) ${y}^2={x}^{3}-372{x}+2761$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.