Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
72.1-a1 |
72.1-a |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
72.1 |
\( 2^{3} \cdot 3^{2} \) |
\( 2^{10} \cdot 3^{16} \) |
$0.52060$ |
$(a+1), (3)$ |
0 |
$\Z/8\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$1.817673508$ |
0.454418377 |
\( \frac{207646}{6561} \) |
\( \bigl[i + 1\) , \( -i\) , \( i + 1\) , \( -i - 4\) , \( 22 i\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-i{x}^{2}+\left(-i-4\right){x}+22i$ |
72.1-a2 |
72.1-a |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
72.1 |
\( 2^{3} \cdot 3^{2} \) |
\( 2^{8} \cdot 3^{2} \) |
$0.52060$ |
$(a+1), (3)$ |
0 |
$\Z/8\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$7.270694035$ |
0.454418377 |
\( \frac{2048}{3} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( 1\) , \( 0\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+{x}$ |
72.1-a3 |
72.1-a |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
72.1 |
\( 2^{3} \cdot 3^{2} \) |
\( 2^{4} \cdot 3^{4} \) |
$0.52060$ |
$(a+1), (3)$ |
0 |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{2} \) |
$1$ |
$7.270694035$ |
0.454418377 |
\( \frac{35152}{9} \) |
\( \bigl[i + 1\) , \( -i\) , \( i + 1\) , \( -i + 1\) , \( -i\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-i{x}^{2}+\left(-i+1\right){x}-i$ |
72.1-a4 |
72.1-a |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
72.1 |
\( 2^{3} \cdot 3^{2} \) |
\( 2^{8} \cdot 3^{8} \) |
$0.52060$ |
$(a+1), (3)$ |
0 |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{3} \) |
$1$ |
$3.635347017$ |
0.454418377 |
\( \frac{1556068}{81} \) |
\( \bigl[i + 1\) , \( 0\) , \( i + 1\) , \( -i + 6\) , \( -5 i\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i+6\right){x}-5i$ |
72.1-a5 |
72.1-a |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
72.1 |
\( 2^{3} \cdot 3^{2} \) |
\( 2^{8} \cdot 3^{2} \) |
$0.52060$ |
$(a+1), (3)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$3.635347017$ |
0.454418377 |
\( \frac{28756228}{3} \) |
\( \bigl[i + 1\) , \( -i\) , \( i + 1\) , \( -i + 16\) , \( -28 i\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-i{x}^{2}+\left(-i+16\right){x}-28i$ |
72.1-a6 |
72.1-a |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
72.1 |
\( 2^{3} \cdot 3^{2} \) |
\( 2^{10} \cdot 3^{4} \) |
$0.52060$ |
$(a+1), (3)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$1.817673508$ |
0.454418377 |
\( \frac{3065617154}{9} \) |
\( \bigl[i + 1\) , \( 0\) , \( i + 1\) , \( -i + 96\) , \( -347 i\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i+96\right){x}-347i$ |
Download displayed columns to
Pari/GP
SageMath
Magma
Oscar
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.