Learn more

Refine search


Results (6 matches)

  Download displayed columns to          
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
72.1-a1 72.1-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{2} \) 0 $\Z/8\Z$ $\mathrm{SU}(2)$ $1$ $1.817673508$ 0.454418377 \( \frac{207646}{6561} \) \( \bigl[i + 1\) , \( -i\) , \( i + 1\) , \( -i - 4\) , \( 22 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-i{x}^{2}+\left(-i-4\right){x}+22i$
72.1-a2 72.1-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{2} \) 0 $\Z/8\Z$ $\mathrm{SU}(2)$ $1$ $7.270694035$ 0.454418377 \( \frac{2048}{3} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 1\) , \( 0\bigr] \) ${y}^2={x}^{3}-{x}^{2}+{x}$
72.1-a3 72.1-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $7.270694035$ 0.454418377 \( \frac{35152}{9} \) \( \bigl[i + 1\) , \( -i\) , \( i + 1\) , \( -i + 1\) , \( -i\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-i{x}^{2}+\left(-i+1\right){x}-i$
72.1-a4 72.1-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $3.635347017$ 0.454418377 \( \frac{1556068}{81} \) \( \bigl[i + 1\) , \( 0\) , \( i + 1\) , \( -i + 6\) , \( -5 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i+6\right){x}-5i$
72.1-a5 72.1-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $3.635347017$ 0.454418377 \( \frac{28756228}{3} \) \( \bigl[i + 1\) , \( -i\) , \( i + 1\) , \( -i + 16\) , \( -28 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-i{x}^{2}+\left(-i+16\right){x}-28i$
72.1-a6 72.1-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $1.817673508$ 0.454418377 \( \frac{3065617154}{9} \) \( \bigl[i + 1\) , \( 0\) , \( i + 1\) , \( -i + 96\) , \( -347 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i+96\right){x}-347i$
  Download displayed columns to          

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.