Learn more

Refine search


Results (32 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
68450.5-a1 68450.5-a \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{2} \cdot 37^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.604991208$ $0.858111294$ 2.076599157 \( \frac{1689410871}{18741610} \) \( \bigl[i\) , \( 1\) , \( 0\) , \( 25\) , \( 209\bigr] \) ${y}^2+i{x}{y}={x}^{3}+{x}^{2}+25{x}+209$
68450.5-a2 68450.5-a \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{2} \cdot 37^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.604991208$ $3.432445179$ 2.076599157 \( \frac{15438249}{2960} \) \( \bigl[i\) , \( 1\) , \( 0\) , \( -5\) , \( -5\bigr] \) ${y}^2+i{x}{y}={x}^{3}+{x}^{2}-5{x}-5$
68450.5-a3 68450.5-a \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{2} \cdot 37^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.302495604$ $1.716222589$ 2.076599157 \( \frac{1767172329}{136900} \) \( \bigl[i\) , \( 1\) , \( 0\) , \( -25\) , \( 39\bigr] \) ${y}^2+i{x}{y}={x}^{3}+{x}^{2}-25{x}+39$
68450.5-a4 68450.5-a \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{2} \cdot 37^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.604991208$ $0.858111294$ 2.076599157 \( \frac{6825481747209}{46250} \) \( \bigl[i\) , \( 1\) , \( 0\) , \( -395\) , \( 2925\bigr] \) ${y}^2+i{x}{y}={x}^{3}+{x}^{2}-395{x}+2925$
68450.5-b1 68450.5-b \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{2} \cdot 37^{2} \) $1$ $\Z/3\Z$ $\mathrm{SU}(2)$ $2.402409187$ $2.186771298$ 2.334897536 \( -\frac{16954786009}{370} \) \( \bigl[i\) , \( 0\) , \( i\) , \( -53\) , \( -146\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}-53{x}-146$
68450.5-b2 68450.5-b \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{2} \cdot 37^{2} \) $1$ $\Z/3\Z$ $\mathrm{SU}(2)$ $0.800803062$ $0.728923766$ 2.334897536 \( -\frac{702595369}{50653000} \) \( \bigl[i\) , \( 0\) , \( i\) , \( -18\) , \( -342\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}-18{x}-342$
68450.5-b3 68450.5-b \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{2} \cdot 37^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $2.402409187$ $0.242974588$ 2.334897536 \( \frac{510273943271}{37000000000} \) \( \bigl[i\) , \( 0\) , \( i\) , \( 167\) , \( 9204\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}+167{x}+9204$
68450.5-c1 68450.5-c \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{2} \cdot 37^{2} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.292829669$ $0.563848334$ 4.623122610 \( \frac{381018345107444271}{33422851562500} a - \frac{27278761668403303}{33422851562500} \) \( \bigl[1\) , \( -i - 1\) , \( 1\) , \( -183 i - 132\) , \( -1226 i - 124\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(-183i-132\right){x}-1226i-124$
68450.5-c2 68450.5-c \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{2} \cdot 37^{2} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.073207417$ $1.127696669$ 4.623122610 \( -\frac{2967941642509}{855625000} a + \frac{110070123389}{106953125} \) \( \bigl[i\) , \( i + 1\) , \( i\) , \( -13 i - 41\) , \( -42 i - 112\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}+\left(i+1\right){x}^{2}+\left(-13i-41\right){x}-42i-112$
68450.5-d1 68450.5-d \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{2} \cdot 37^{2} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.292829669$ $0.563848334$ 4.623122610 \( -\frac{381018345107444271}{33422851562500} a - \frac{27278761668403303}{33422851562500} \) \( \bigl[i\) , \( -i + 1\) , \( i\) , \( 183 i - 131\) , \( -1226 i + 124\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(183i-131\right){x}-1226i+124$
68450.5-d2 68450.5-d \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{2} \cdot 37^{2} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.073207417$ $1.127696669$ 4.623122610 \( \frac{2967941642509}{855625000} a + \frac{110070123389}{106953125} \) \( \bigl[1\) , \( i - 1\) , \( 1\) , \( 13 i - 42\) , \( -42 i + 112\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(i-1\right){x}^{2}+\left(13i-42\right){x}-42i+112$
68450.5-e1 68450.5-e \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{2} \cdot 37^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.585252191$ $1.631436169$ 3.819206376 \( \frac{214921799}{378880} \) \( \bigl[i\) , \( -1\) , \( 0\) , \( 13\) , \( 19\bigr] \) ${y}^2+i{x}{y}={x}^{3}-{x}^{2}+13{x}+19$
68450.5-f1 68450.5-f \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{2} \cdot 37^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.134999260$ $1.317717944$ 6.404074123 \( \frac{1346487493}{17523200} a + \frac{7432037549}{4380800} \) \( \bigl[i\) , \( 0\) , \( i + 1\) , \( 11 i + 25\) , \( -2 i - 14\bigr] \) ${y}^2+i{x}{y}+\left(i+1\right){y}={x}^{3}+\left(11i+25\right){x}-2i-14$
68450.5-f2 68450.5-f \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{2} \cdot 37^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.269998520$ $0.658858972$ 6.404074123 \( -\frac{155462940438507}{1499328800} a + \frac{237224048385169}{1499328800} \) \( \bigl[i\) , \( 0\) , \( i + 1\) , \( 91 i + 265\) , \( -1586 i + 834\bigr] \) ${y}^2+i{x}{y}+\left(i+1\right){y}={x}^{3}+\left(91i+265\right){x}-1586i+834$
68450.5-g1 68450.5-g \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{2} \cdot 37^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.134999260$ $1.317717944$ 6.404074123 \( -\frac{1346487493}{17523200} a + \frac{7432037549}{4380800} \) \( \bigl[1\) , \( 0\) , \( i + 1\) , \( -12 i + 24\) , \( -2 i + 14\bigr] \) ${y}^2+{x}{y}+\left(i+1\right){y}={x}^{3}+\left(-12i+24\right){x}-2i+14$
68450.5-g2 68450.5-g \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{2} \cdot 37^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.269998520$ $0.658858972$ 6.404074123 \( \frac{155462940438507}{1499328800} a + \frac{237224048385169}{1499328800} \) \( \bigl[1\) , \( 0\) , \( i + 1\) , \( -92 i + 264\) , \( -1586 i - 834\bigr] \) ${y}^2+{x}{y}+\left(i+1\right){y}={x}^{3}+\left(-92i+264\right){x}-1586i-834$
68450.5-h1 68450.5-h \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{2} \cdot 37^{2} \) 0 $\Z/12\Z$ $\mathrm{SU}(2)$ $1$ $0.207070166$ 4.969683988 \( -\frac{818871339068490287063}{3660470703125000} a - \frac{45099024956931216152}{457558837890625} \) \( \bigl[i\) , \( 0\) , \( 0\) , \( -920 i + 2805\) , \( 54952 i + 28239\bigr] \) ${y}^2+i{x}{y}={x}^{3}+\left(-920i+2805\right){x}+54952i+28239$
68450.5-h2 68450.5-h \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{2} \cdot 37^{2} \) 0 $\Z/12\Z$ $\mathrm{SU}(2)$ $1$ $0.207070166$ 4.969683988 \( \frac{818871339068490287063}{3660470703125000} a - \frac{45099024956931216152}{457558837890625} \) \( \bigl[i\) , \( 0\) , \( 0\) , \( 920 i + 2805\) , \( -54952 i + 28239\bigr] \) ${y}^2+i{x}{y}={x}^{3}+\left(920i+2805\right){x}-54952i+28239$
68450.5-h3 68450.5-h \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{2} \cdot 37^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.138046777$ 4.969683988 \( -\frac{16048965315233521}{256572640900} \) \( \bigl[i\) , \( 0\) , \( 0\) , \( -5255\) , \( 149075\bigr] \) ${y}^2+i{x}{y}={x}^{3}-5255{x}+149075$
68450.5-h4 68450.5-h \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{2} \cdot 37^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.069023388$ 4.969683988 \( -\frac{3925596463972580570890057}{8228690007300044101250} a + \frac{1684584749749505877267688}{4114345003650022050625} \) \( \bigl[i\) , \( 0\) , \( 0\) , \( 5030 i - 5095\) , \( 293862 i + 186619\bigr] \) ${y}^2+i{x}{y}={x}^{3}+\left(5030i-5095\right){x}+293862i+186619$
68450.5-h5 68450.5-h \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{2} \cdot 37^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.069023388$ 4.969683988 \( \frac{3925596463972580570890057}{8228690007300044101250} a + \frac{1684584749749505877267688}{4114345003650022050625} \) \( \bigl[i\) , \( 0\) , \( 0\) , \( -5030 i - 5095\) , \( -293862 i + 186619\bigr] \) ${y}^2+i{x}{y}={x}^{3}+\left(-5030i-5095\right){x}-293862i+186619$
68450.5-h6 68450.5-h \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{2} \cdot 37^{2} \) 0 $\Z/2\Z\oplus\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $0.414140332$ 4.969683988 \( \frac{1625964918479}{1369000000} \) \( \bigl[i\) , \( 0\) , \( 0\) , \( 245\) , \( 975\bigr] \) ${y}^2+i{x}{y}={x}^{3}+245{x}+975$
68450.5-h7 68450.5-h \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{2} \cdot 37^{2} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $0.828280664$ 4.969683988 \( \frac{46694890801}{18944000} \) \( \bigl[i\) , \( 0\) , \( 0\) , \( -75\) , \( 143\bigr] \) ${y}^2+i{x}{y}={x}^{3}-75{x}+143$
68450.5-h8 68450.5-h \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{2} \cdot 37^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.276093554$ 4.969683988 \( \frac{16232905099479601}{4052240} \) \( \bigl[i\) , \( 0\) , \( 0\) , \( -5275\) , \( 147903\bigr] \) ${y}^2+i{x}{y}={x}^{3}-5275{x}+147903$
68450.5-i1 68450.5-i \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{2} \cdot 37^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $2.278397211$ 4.556794423 \( -\frac{34353674}{855625} a + \frac{2747628703}{3422500} \) \( \bigl[i\) , \( i\) , \( i\) , \( 4 i + 6\) , \( -5 i - 6\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}+i{x}^{2}+\left(4i+6\right){x}-5i-6$
68450.5-i2 68450.5-i \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{2} \cdot 37^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.139198605$ 4.556794423 \( \frac{517593117}{3748322} a + \frac{160844155574}{46854025} \) \( \bigl[i\) , \( i\) , \( i\) , \( -26 i - 34\) , \( -73 i - 30\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}+i{x}^{2}+\left(-26i-34\right){x}-73i-30$
68450.5-i3 68450.5-i \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{2} \cdot 37^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.569599302$ 4.556794423 \( -\frac{11118569221560365}{7024958907842} a + \frac{824691791614398091}{35124794539210} \) \( \bigl[i\) , \( i\) , \( i\) , \( -151 i - 209\) , \( 1177 i + 980\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}+i{x}^{2}+\left(-151i-209\right){x}+1177i+980$
68450.5-i4 68450.5-i \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{2} \cdot 37^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.569599302$ 4.556794423 \( \frac{1743482895211437}{2342701250} a + \frac{15919076014245841}{2342701250} \) \( \bigl[i\) , \( i\) , \( i\) , \( -381 i - 499\) , \( -5155 i - 3216\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}+i{x}^{2}+\left(-381i-499\right){x}-5155i-3216$
68450.5-j1 68450.5-j \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{2} \cdot 37^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $2.278397211$ 4.556794423 \( \frac{34353674}{855625} a + \frac{2747628703}{3422500} \) \( \bigl[1\) , \( i\) , \( 1\) , \( -4 i + 5\) , \( -5 i + 6\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+i{x}^{2}+\left(-4i+5\right){x}-5i+6$
68450.5-j2 68450.5-j \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{2} \cdot 37^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.139198605$ 4.556794423 \( -\frac{517593117}{3748322} a + \frac{160844155574}{46854025} \) \( \bigl[1\) , \( i\) , \( 1\) , \( 26 i - 35\) , \( -73 i + 30\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+i{x}^{2}+\left(26i-35\right){x}-73i+30$
68450.5-j3 68450.5-j \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{2} \cdot 37^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.569599302$ 4.556794423 \( \frac{11118569221560365}{7024958907842} a + \frac{824691791614398091}{35124794539210} \) \( \bigl[1\) , \( i\) , \( 1\) , \( 151 i - 210\) , \( 1177 i - 980\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+i{x}^{2}+\left(151i-210\right){x}+1177i-980$
68450.5-j4 68450.5-j \(\Q(\sqrt{-1}) \) \( 2 \cdot 5^{2} \cdot 37^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.569599302$ 4.556794423 \( -\frac{1743482895211437}{2342701250} a + \frac{15919076014245841}{2342701250} \) \( \bigl[1\) , \( i\) , \( 1\) , \( 381 i - 500\) , \( -5155 i + 3216\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+i{x}^{2}+\left(381i-500\right){x}-5155i+3216$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.