Learn more

Refine search


Results (32 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
68450.5-a1 68450.5-a Q(1)\Q(\sqrt{-1}) 252372 2 \cdot 5^{2} \cdot 37^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.6049912080.604991208 0.8581112940.858111294 2.076599157 168941087118741610 \frac{1689410871}{18741610} [i \bigl[i , 1 1 , 0 0 , 25 25 , 209] 209\bigr] y2+ixy=x3+x2+25x+209{y}^2+i{x}{y}={x}^{3}+{x}^{2}+25{x}+209
68450.5-a2 68450.5-a Q(1)\Q(\sqrt{-1}) 252372 2 \cdot 5^{2} \cdot 37^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.6049912080.604991208 3.4324451793.432445179 2.076599157 154382492960 \frac{15438249}{2960} [i \bigl[i , 1 1 , 0 0 , 5 -5 , 5] -5\bigr] y2+ixy=x3+x25x5{y}^2+i{x}{y}={x}^{3}+{x}^{2}-5{x}-5
68450.5-a3 68450.5-a Q(1)\Q(\sqrt{-1}) 252372 2 \cdot 5^{2} \cdot 37^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.3024956040.302495604 1.7162225891.716222589 2.076599157 1767172329136900 \frac{1767172329}{136900} [i \bigl[i , 1 1 , 0 0 , 25 -25 , 39] 39\bigr] y2+ixy=x3+x225x+39{y}^2+i{x}{y}={x}^{3}+{x}^{2}-25{x}+39
68450.5-a4 68450.5-a Q(1)\Q(\sqrt{-1}) 252372 2 \cdot 5^{2} \cdot 37^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.6049912080.604991208 0.8581112940.858111294 2.076599157 682548174720946250 \frac{6825481747209}{46250} [i \bigl[i , 1 1 , 0 0 , 395 -395 , 2925] 2925\bigr] y2+ixy=x3+x2395x+2925{y}^2+i{x}{y}={x}^{3}+{x}^{2}-395{x}+2925
68450.5-b1 68450.5-b Q(1)\Q(\sqrt{-1}) 252372 2 \cdot 5^{2} \cdot 37^{2} 11 Z/3Z\Z/3\Z SU(2)\mathrm{SU}(2) 2.4024091872.402409187 2.1867712982.186771298 2.334897536 16954786009370 -\frac{16954786009}{370} [i \bigl[i , 0 0 , i i , 53 -53 , 146] -146\bigr] y2+ixy+iy=x353x146{y}^2+i{x}{y}+i{y}={x}^{3}-53{x}-146
68450.5-b2 68450.5-b Q(1)\Q(\sqrt{-1}) 252372 2 \cdot 5^{2} \cdot 37^{2} 11 Z/3Z\Z/3\Z SU(2)\mathrm{SU}(2) 0.8008030620.800803062 0.7289237660.728923766 2.334897536 70259536950653000 -\frac{702595369}{50653000} [i \bigl[i , 0 0 , i i , 18 -18 , 342] -342\bigr] y2+ixy+iy=x318x342{y}^2+i{x}{y}+i{y}={x}^{3}-18{x}-342
68450.5-b3 68450.5-b Q(1)\Q(\sqrt{-1}) 252372 2 \cdot 5^{2} \cdot 37^{2} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 2.4024091872.402409187 0.2429745880.242974588 2.334897536 51027394327137000000000 \frac{510273943271}{37000000000} [i \bigl[i , 0 0 , i i , 167 167 , 9204] 9204\bigr] y2+ixy+iy=x3+167x+9204{y}^2+i{x}{y}+i{y}={x}^{3}+167{x}+9204
68450.5-c1 68450.5-c Q(1)\Q(\sqrt{-1}) 252372 2 \cdot 5^{2} \cdot 37^{2} 22 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.2928296690.292829669 0.5638483340.563848334 4.623122610 38101834510744427133422851562500a2727876166840330333422851562500 \frac{381018345107444271}{33422851562500} a - \frac{27278761668403303}{33422851562500} [1 \bigl[1 , i1 -i - 1 , 1 1 , 183i132 -183 i - 132 , 1226i124] -1226 i - 124\bigr] y2+xy+y=x3+(i1)x2+(183i132)x1226i124{y}^2+{x}{y}+{y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(-183i-132\right){x}-1226i-124
68450.5-c2 68450.5-c Q(1)\Q(\sqrt{-1}) 252372 2 \cdot 5^{2} \cdot 37^{2} 22 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.0732074170.073207417 1.1276966691.127696669 4.623122610 2967941642509855625000a+110070123389106953125 -\frac{2967941642509}{855625000} a + \frac{110070123389}{106953125} [i \bigl[i , i+1 i + 1 , i i , 13i41 -13 i - 41 , 42i112] -42 i - 112\bigr] y2+ixy+iy=x3+(i+1)x2+(13i41)x42i112{y}^2+i{x}{y}+i{y}={x}^{3}+\left(i+1\right){x}^{2}+\left(-13i-41\right){x}-42i-112
68450.5-d1 68450.5-d Q(1)\Q(\sqrt{-1}) 252372 2 \cdot 5^{2} \cdot 37^{2} 22 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.2928296690.292829669 0.5638483340.563848334 4.623122610 38101834510744427133422851562500a2727876166840330333422851562500 -\frac{381018345107444271}{33422851562500} a - \frac{27278761668403303}{33422851562500} [i \bigl[i , i+1 -i + 1 , i i , 183i131 183 i - 131 , 1226i+124] -1226 i + 124\bigr] y2+ixy+iy=x3+(i+1)x2+(183i131)x1226i+124{y}^2+i{x}{y}+i{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(183i-131\right){x}-1226i+124
68450.5-d2 68450.5-d Q(1)\Q(\sqrt{-1}) 252372 2 \cdot 5^{2} \cdot 37^{2} 22 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.0732074170.073207417 1.1276966691.127696669 4.623122610 2967941642509855625000a+110070123389106953125 \frac{2967941642509}{855625000} a + \frac{110070123389}{106953125} [1 \bigl[1 , i1 i - 1 , 1 1 , 13i42 13 i - 42 , 42i+112] -42 i + 112\bigr] y2+xy+y=x3+(i1)x2+(13i42)x42i+112{y}^2+{x}{y}+{y}={x}^{3}+\left(i-1\right){x}^{2}+\left(13i-42\right){x}-42i+112
68450.5-e1 68450.5-e Q(1)\Q(\sqrt{-1}) 252372 2 \cdot 5^{2} \cdot 37^{2} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.5852521910.585252191 1.6314361691.631436169 3.819206376 214921799378880 \frac{214921799}{378880} [i \bigl[i , 1 -1 , 0 0 , 13 13 , 19] 19\bigr] y2+ixy=x3x2+13x+19{y}^2+i{x}{y}={x}^{3}-{x}^{2}+13{x}+19
68450.5-f1 68450.5-f Q(1)\Q(\sqrt{-1}) 252372 2 \cdot 5^{2} \cdot 37^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.1349992600.134999260 1.3177179441.317717944 6.404074123 134648749317523200a+74320375494380800 \frac{1346487493}{17523200} a + \frac{7432037549}{4380800} [i \bigl[i , 0 0 , i+1 i + 1 , 11i+25 11 i + 25 , 2i14] -2 i - 14\bigr] y2+ixy+(i+1)y=x3+(11i+25)x2i14{y}^2+i{x}{y}+\left(i+1\right){y}={x}^{3}+\left(11i+25\right){x}-2i-14
68450.5-f2 68450.5-f Q(1)\Q(\sqrt{-1}) 252372 2 \cdot 5^{2} \cdot 37^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.2699985200.269998520 0.6588589720.658858972 6.404074123 1554629404385071499328800a+2372240483851691499328800 -\frac{155462940438507}{1499328800} a + \frac{237224048385169}{1499328800} [i \bigl[i , 0 0 , i+1 i + 1 , 91i+265 91 i + 265 , 1586i+834] -1586 i + 834\bigr] y2+ixy+(i+1)y=x3+(91i+265)x1586i+834{y}^2+i{x}{y}+\left(i+1\right){y}={x}^{3}+\left(91i+265\right){x}-1586i+834
68450.5-g1 68450.5-g Q(1)\Q(\sqrt{-1}) 252372 2 \cdot 5^{2} \cdot 37^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.1349992600.134999260 1.3177179441.317717944 6.404074123 134648749317523200a+74320375494380800 -\frac{1346487493}{17523200} a + \frac{7432037549}{4380800} [1 \bigl[1 , 0 0 , i+1 i + 1 , 12i+24 -12 i + 24 , 2i+14] -2 i + 14\bigr] y2+xy+(i+1)y=x3+(12i+24)x2i+14{y}^2+{x}{y}+\left(i+1\right){y}={x}^{3}+\left(-12i+24\right){x}-2i+14
68450.5-g2 68450.5-g Q(1)\Q(\sqrt{-1}) 252372 2 \cdot 5^{2} \cdot 37^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.2699985200.269998520 0.6588589720.658858972 6.404074123 1554629404385071499328800a+2372240483851691499328800 \frac{155462940438507}{1499328800} a + \frac{237224048385169}{1499328800} [1 \bigl[1 , 0 0 , i+1 i + 1 , 92i+264 -92 i + 264 , 1586i834] -1586 i - 834\bigr] y2+xy+(i+1)y=x3+(92i+264)x1586i834{y}^2+{x}{y}+\left(i+1\right){y}={x}^{3}+\left(-92i+264\right){x}-1586i-834
68450.5-h1 68450.5-h Q(1)\Q(\sqrt{-1}) 252372 2 \cdot 5^{2} \cdot 37^{2} 0 Z/12Z\Z/12\Z SU(2)\mathrm{SU}(2) 11 0.2070701660.207070166 4.969683988 8188713390684902870633660470703125000a45099024956931216152457558837890625 -\frac{818871339068490287063}{3660470703125000} a - \frac{45099024956931216152}{457558837890625} [i \bigl[i , 0 0 , 0 0 , 920i+2805 -920 i + 2805 , 54952i+28239] 54952 i + 28239\bigr] y2+ixy=x3+(920i+2805)x+54952i+28239{y}^2+i{x}{y}={x}^{3}+\left(-920i+2805\right){x}+54952i+28239
68450.5-h2 68450.5-h Q(1)\Q(\sqrt{-1}) 252372 2 \cdot 5^{2} \cdot 37^{2} 0 Z/12Z\Z/12\Z SU(2)\mathrm{SU}(2) 11 0.2070701660.207070166 4.969683988 8188713390684902870633660470703125000a45099024956931216152457558837890625 \frac{818871339068490287063}{3660470703125000} a - \frac{45099024956931216152}{457558837890625} [i \bigl[i , 0 0 , 0 0 , 920i+2805 920 i + 2805 , 54952i+28239] -54952 i + 28239\bigr] y2+ixy=x3+(920i+2805)x54952i+28239{y}^2+i{x}{y}={x}^{3}+\left(920i+2805\right){x}-54952i+28239
68450.5-h3 68450.5-h Q(1)\Q(\sqrt{-1}) 252372 2 \cdot 5^{2} \cdot 37^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.1380467770.138046777 4.969683988 16048965315233521256572640900 -\frac{16048965315233521}{256572640900} [i \bigl[i , 0 0 , 0 0 , 5255 -5255 , 149075] 149075\bigr] y2+ixy=x35255x+149075{y}^2+i{x}{y}={x}^{3}-5255{x}+149075
68450.5-h4 68450.5-h Q(1)\Q(\sqrt{-1}) 252372 2 \cdot 5^{2} \cdot 37^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 0.0690233880.069023388 4.969683988 39255964639725805708900578228690007300044101250a+16845847497495058772676884114345003650022050625 -\frac{3925596463972580570890057}{8228690007300044101250} a + \frac{1684584749749505877267688}{4114345003650022050625} [i \bigl[i , 0 0 , 0 0 , 5030i5095 5030 i - 5095 , 293862i+186619] 293862 i + 186619\bigr] y2+ixy=x3+(5030i5095)x+293862i+186619{y}^2+i{x}{y}={x}^{3}+\left(5030i-5095\right){x}+293862i+186619
68450.5-h5 68450.5-h Q(1)\Q(\sqrt{-1}) 252372 2 \cdot 5^{2} \cdot 37^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 0.0690233880.069023388 4.969683988 39255964639725805708900578228690007300044101250a+16845847497495058772676884114345003650022050625 \frac{3925596463972580570890057}{8228690007300044101250} a + \frac{1684584749749505877267688}{4114345003650022050625} [i \bigl[i , 0 0 , 0 0 , 5030i5095 -5030 i - 5095 , 293862i+186619] -293862 i + 186619\bigr] y2+ixy=x3+(5030i5095)x293862i+186619{y}^2+i{x}{y}={x}^{3}+\left(-5030i-5095\right){x}-293862i+186619
68450.5-h6 68450.5-h Q(1)\Q(\sqrt{-1}) 252372 2 \cdot 5^{2} \cdot 37^{2} 0 Z/2ZZ/6Z\Z/2\Z\oplus\Z/6\Z SU(2)\mathrm{SU}(2) 11 0.4141403320.414140332 4.969683988 16259649184791369000000 \frac{1625964918479}{1369000000} [i \bigl[i , 0 0 , 0 0 , 245 245 , 975] 975\bigr] y2+ixy=x3+245x+975{y}^2+i{x}{y}={x}^{3}+245{x}+975
68450.5-h7 68450.5-h Q(1)\Q(\sqrt{-1}) 252372 2 \cdot 5^{2} \cdot 37^{2} 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 0.8282806640.828280664 4.969683988 4669489080118944000 \frac{46694890801}{18944000} [i \bigl[i , 0 0 , 0 0 , 75 -75 , 143] 143\bigr] y2+ixy=x375x+143{y}^2+i{x}{y}={x}^{3}-75{x}+143
68450.5-h8 68450.5-h Q(1)\Q(\sqrt{-1}) 252372 2 \cdot 5^{2} \cdot 37^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.2760935540.276093554 4.969683988 162329050994796014052240 \frac{16232905099479601}{4052240} [i \bigl[i , 0 0 , 0 0 , 5275 -5275 , 147903] 147903\bigr] y2+ixy=x35275x+147903{y}^2+i{x}{y}={x}^{3}-5275{x}+147903
68450.5-i1 68450.5-i Q(1)\Q(\sqrt{-1}) 252372 2 \cdot 5^{2} \cdot 37^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 2.2783972112.278397211 4.556794423 34353674855625a+27476287033422500 -\frac{34353674}{855625} a + \frac{2747628703}{3422500} [i \bigl[i , i i , i i , 4i+6 4 i + 6 , 5i6] -5 i - 6\bigr] y2+ixy+iy=x3+ix2+(4i+6)x5i6{y}^2+i{x}{y}+i{y}={x}^{3}+i{x}^{2}+\left(4i+6\right){x}-5i-6
68450.5-i2 68450.5-i Q(1)\Q(\sqrt{-1}) 252372 2 \cdot 5^{2} \cdot 37^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.1391986051.139198605 4.556794423 5175931173748322a+16084415557446854025 \frac{517593117}{3748322} a + \frac{160844155574}{46854025} [i \bigl[i , i i , i i , 26i34 -26 i - 34 , 73i30] -73 i - 30\bigr] y2+ixy+iy=x3+ix2+(26i34)x73i30{y}^2+i{x}{y}+i{y}={x}^{3}+i{x}^{2}+\left(-26i-34\right){x}-73i-30
68450.5-i3 68450.5-i Q(1)\Q(\sqrt{-1}) 252372 2 \cdot 5^{2} \cdot 37^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.5695993020.569599302 4.556794423 111185692215603657024958907842a+82469179161439809135124794539210 -\frac{11118569221560365}{7024958907842} a + \frac{824691791614398091}{35124794539210} [i \bigl[i , i i , i i , 151i209 -151 i - 209 , 1177i+980] 1177 i + 980\bigr] y2+ixy+iy=x3+ix2+(151i209)x+1177i+980{y}^2+i{x}{y}+i{y}={x}^{3}+i{x}^{2}+\left(-151i-209\right){x}+1177i+980
68450.5-i4 68450.5-i Q(1)\Q(\sqrt{-1}) 252372 2 \cdot 5^{2} \cdot 37^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 0.5695993020.569599302 4.556794423 17434828952114372342701250a+159190760142458412342701250 \frac{1743482895211437}{2342701250} a + \frac{15919076014245841}{2342701250} [i \bigl[i , i i , i i , 381i499 -381 i - 499 , 5155i3216] -5155 i - 3216\bigr] y2+ixy+iy=x3+ix2+(381i499)x5155i3216{y}^2+i{x}{y}+i{y}={x}^{3}+i{x}^{2}+\left(-381i-499\right){x}-5155i-3216
68450.5-j1 68450.5-j Q(1)\Q(\sqrt{-1}) 252372 2 \cdot 5^{2} \cdot 37^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 2.2783972112.278397211 4.556794423 34353674855625a+27476287033422500 \frac{34353674}{855625} a + \frac{2747628703}{3422500} [1 \bigl[1 , i i , 1 1 , 4i+5 -4 i + 5 , 5i+6] -5 i + 6\bigr] y2+xy+y=x3+ix2+(4i+5)x5i+6{y}^2+{x}{y}+{y}={x}^{3}+i{x}^{2}+\left(-4i+5\right){x}-5i+6
68450.5-j2 68450.5-j Q(1)\Q(\sqrt{-1}) 252372 2 \cdot 5^{2} \cdot 37^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.1391986051.139198605 4.556794423 5175931173748322a+16084415557446854025 -\frac{517593117}{3748322} a + \frac{160844155574}{46854025} [1 \bigl[1 , i i , 1 1 , 26i35 26 i - 35 , 73i+30] -73 i + 30\bigr] y2+xy+y=x3+ix2+(26i35)x73i+30{y}^2+{x}{y}+{y}={x}^{3}+i{x}^{2}+\left(26i-35\right){x}-73i+30
68450.5-j3 68450.5-j Q(1)\Q(\sqrt{-1}) 252372 2 \cdot 5^{2} \cdot 37^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.5695993020.569599302 4.556794423 111185692215603657024958907842a+82469179161439809135124794539210 \frac{11118569221560365}{7024958907842} a + \frac{824691791614398091}{35124794539210} [1 \bigl[1 , i i , 1 1 , 151i210 151 i - 210 , 1177i980] 1177 i - 980\bigr] y2+xy+y=x3+ix2+(151i210)x+1177i980{y}^2+{x}{y}+{y}={x}^{3}+i{x}^{2}+\left(151i-210\right){x}+1177i-980
68450.5-j4 68450.5-j Q(1)\Q(\sqrt{-1}) 252372 2 \cdot 5^{2} \cdot 37^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 0.5695993020.569599302 4.556794423 17434828952114372342701250a+159190760142458412342701250 -\frac{1743482895211437}{2342701250} a + \frac{15919076014245841}{2342701250} [1 \bigl[1 , i i , 1 1 , 381i500 381 i - 500 , 5155i+3216] -5155 i + 3216\bigr] y2+xy+y=x3+ix2+(381i500)x5155i+3216{y}^2+{x}{y}+{y}={x}^{3}+i{x}^{2}+\left(381i-500\right){x}-5155i+3216
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.