Elliptic curves in class 67600.6-d over \(\Q(\sqrt{-1}) \)
Isogeny class 67600.6-d contains
8 curves linked by isogenies of
degrees dividing 12.
Curve label |
Weierstrass Coefficients |
67600.6-d1
| \( \bigl[i + 1\) , \( i - 1\) , \( i + 1\) , \( -108 i - 115\) , \( 655 i + 421\bigr] \)
|
67600.6-d2
| \( \bigl[i + 1\) , \( i - 1\) , \( i + 1\) , \( -158 i + 5\) , \( -449 i + 637\bigr] \)
|
67600.6-d3
| \( \bigl[i + 1\) , \( i - 1\) , \( i + 1\) , \( 262 i - 665\) , \( 4361 i - 6513\bigr] \)
|
67600.6-d4
| \( \bigl[i + 1\) , \( i - 1\) , \( i + 1\) , \( -288 i + 655\) , \( -6495 i - 4389\bigr] \)
|
67600.6-d5
| \( \bigl[i + 1\) , \( i - 1\) , \( i + 1\) , \( 107 i + 45\) , \( -158 i - 805\bigr] \)
|
67600.6-d6
| \( \bigl[i + 1\) , \( i - 1\) , \( i + 1\) , \( -13 i - 5\) , \( 4 i + 23\bigr] \)
|
67600.6-d7
| \( \bigl[0\) , \( i\) , \( 0\) , \( -16 i - 7\) , \( -21 i + 9\bigr] \)
|
67600.6-d8
| \( \bigl[0\) , \( i\) , \( 0\) , \( -496 i - 207\) , \( 4635 i - 755\bigr] \)
|
Rank: \( 0 \)
\(\left(\begin{array}{rrrrrrrr}
1 & 4 & 3 & 12 & 6 & 2 & 4 & 12 \\
4 & 1 & 12 & 3 & 6 & 2 & 4 & 12 \\
3 & 12 & 1 & 4 & 2 & 6 & 12 & 4 \\
12 & 3 & 4 & 1 & 2 & 6 & 12 & 4 \\
6 & 6 & 2 & 2 & 1 & 3 & 6 & 2 \\
2 & 2 & 6 & 6 & 3 & 1 & 2 & 6 \\
4 & 4 & 12 & 12 & 6 & 2 & 1 & 3 \\
12 & 12 & 4 & 4 & 2 & 6 & 3 & 1
\end{array}\right)\)