Properties

Label 2.0.4.1-67600.6-a1
Base field \(\Q(\sqrt{-1}) \)
Conductor norm \( 67600 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-1}) \)

Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))
 
gp: K = nfinit(Polrev([1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(i+1\right){x}^{2}+\left(7355i+12162\right){x}+455466i-474647\)
sage: E = EllipticCurve([K([1,1]),K([1,1]),K([1,1]),K([12162,7355]),K([-474647,455466])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([1,1]),Polrev([1,1]),Polrev([12162,7355]),Polrev([-474647,455466])], K);
 
magma: E := EllipticCurve([K![1,1],K![1,1],K![1,1],K![12162,7355],K![-474647,455466]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((100i-240)\) = \((i+1)^{4}\cdot(-i-2)\cdot(2i+1)\cdot(2i+3)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 67600 \) = \(2^{4}\cdot5\cdot5\cdot13^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((1778129920i-7150754560)\) = \((i+1)^{16}\cdot(-i-2)^{6}\cdot(2i+1)\cdot(2i+3)^{9}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 54295036789760000000 \) = \(2^{16}\cdot5^{6}\cdot5\cdot13^{9}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{1411302663595036}{34328125} i - \frac{1774751413484333}{137312500} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(25 i - 170 : -2644 i - 215 : 1\right)$
Height \(3.1782664691921067570130096809294506898\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-67 i + 18 : 24 i - 43 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 3.1782664691921067570130096809294506898 \)
Period: \( 0.13372200566257858244343433497936453805 \)
Tamagawa product: \( 16 \)  =  \(2^{2}\cdot2\cdot1\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 3.4000333343239243000530617954080781598 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((i+1)\) \(2\) \(4\) \(I_{8}^{*}\) Additive \(1\) \(4\) \(16\) \(4\)
\((-i-2)\) \(5\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)
\((2i+1)\) \(5\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((2i+3)\) \(13\) \(2\) \(I_{3}^{*}\) Additive \(1\) \(2\) \(9\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 67600.6-a consists of curves linked by isogenies of degrees dividing 12.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.