Elliptic curves in class 67600.4-f over \(\Q(\sqrt{-1}) \)
Isogeny class 67600.4-f contains
8 curves linked by isogenies of
degrees dividing 12.
Curve label |
Weierstrass Coefficients |
67600.4-f1
| \( \bigl[i + 1\) , \( i - 1\) , \( 0\) , \( 155 i + 5\) , \( 454 i + 481\bigr] \)
|
67600.4-f2
| \( \bigl[i + 1\) , \( i - 1\) , \( 0\) , \( 105 i - 115\) , \( -770 i + 315\bigr] \)
|
67600.4-f3
| \( \bigl[i + 1\) , \( i - 1\) , \( 0\) , \( 285 i + 655\) , \( 7150 i - 4675\bigr] \)
|
67600.4-f4
| \( \bigl[i + 1\) , \( i - 1\) , \( 0\) , \( -265 i - 665\) , \( -5026 i - 6249\bigr] \)
|
67600.4-f5
| \( \bigl[i + 1\) , \( i - 1\) , \( 0\) , \( -110 i + 45\) , \( 203 i - 696\bigr] \)
|
67600.4-f6
| \( \bigl[i + 1\) , \( i - 1\) , \( 0\) , \( 10 i - 5\) , \( -9 i + 12\bigr] \)
|
67600.4-f7
| \( \bigl[0\) , \( i\) , \( 0\) , \( 16 i - 7\) , \( -21 i - 9\bigr] \)
|
67600.4-f8
| \( \bigl[0\) , \( i\) , \( 0\) , \( 496 i - 207\) , \( 4635 i + 755\bigr] \)
|
Rank: \( 0 \)
\(\left(\begin{array}{rrrrrrrr}
1 & 4 & 3 & 12 & 6 & 2 & 4 & 12 \\
4 & 1 & 12 & 3 & 6 & 2 & 4 & 12 \\
3 & 12 & 1 & 4 & 2 & 6 & 12 & 4 \\
12 & 3 & 4 & 1 & 2 & 6 & 12 & 4 \\
6 & 6 & 2 & 2 & 1 & 3 & 6 & 2 \\
2 & 2 & 6 & 6 & 3 & 1 & 2 & 6 \\
4 & 4 & 12 & 12 & 6 & 2 & 1 & 3 \\
12 & 12 & 4 & 4 & 2 & 6 & 3 & 1
\end{array}\right)\)