Properties

Base field \(\Q(\sqrt{-1}) \)
Label 2.0.4.1-67600.4-f
Conductor 67600.4
Rank \( 0 \)

Related objects

Learn more

Base field \(\Q(\sqrt{-1}) \)

Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).

Elliptic curves in class 67600.4-f over \(\Q(\sqrt{-1}) \)

Isogeny class 67600.4-f contains 8 curves linked by isogenies of degrees dividing 12.

Curve label Weierstrass Coefficients
67600.4-f1 \( \bigl[i + 1\) , \( i - 1\) , \( 0\) , \( 155 i + 5\) , \( 454 i + 481\bigr] \)
67600.4-f2 \( \bigl[i + 1\) , \( i - 1\) , \( 0\) , \( 105 i - 115\) , \( -770 i + 315\bigr] \)
67600.4-f3 \( \bigl[i + 1\) , \( i - 1\) , \( 0\) , \( 285 i + 655\) , \( 7150 i - 4675\bigr] \)
67600.4-f4 \( \bigl[i + 1\) , \( i - 1\) , \( 0\) , \( -265 i - 665\) , \( -5026 i - 6249\bigr] \)
67600.4-f5 \( \bigl[i + 1\) , \( i - 1\) , \( 0\) , \( -110 i + 45\) , \( 203 i - 696\bigr] \)
67600.4-f6 \( \bigl[i + 1\) , \( i - 1\) , \( 0\) , \( 10 i - 5\) , \( -9 i + 12\bigr] \)
67600.4-f7 \( \bigl[0\) , \( i\) , \( 0\) , \( 16 i - 7\) , \( -21 i - 9\bigr] \)
67600.4-f8 \( \bigl[0\) , \( i\) , \( 0\) , \( 496 i - 207\) , \( 4635 i + 755\bigr] \)

Rank

Rank: \( 0 \)

Isogeny matrix

\(\left(\begin{array}{rrrrrrrr} 1 & 4 & 3 & 12 & 6 & 2 & 4 & 12 \\ 4 & 1 & 12 & 3 & 6 & 2 & 4 & 12 \\ 3 & 12 & 1 & 4 & 2 & 6 & 12 & 4 \\ 12 & 3 & 4 & 1 & 2 & 6 & 12 & 4 \\ 6 & 6 & 2 & 2 & 1 & 3 & 6 & 2 \\ 2 & 2 & 6 & 6 & 3 & 1 & 2 & 6 \\ 4 & 4 & 12 & 12 & 6 & 2 & 1 & 3 \\ 12 & 12 & 4 & 4 & 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph