Properties

Base field \(\Q(\sqrt{-1}) \)
Label 2.0.4.1-65.3-a4
Conductor \((-4 i - 7)\)
Conductor norm \( 65 \)
CM no
base-change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field \(\Q(\sqrt{-1}) \)

Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<i> := NumberField(R![1, 0, 1]);
 
sage: x = polygen(QQ); K.<i> = NumberField(x^2 + 1)
 
gp (2.8): K = nfinit(i^2 + 1);
 

Weierstrass equation

\( y^2 + \left(i + 1\right) x y + i y = x^{3} + \left(i - 1\right) x^{2} + \left(59 i + 99\right) x + 372 i - 410 \)
magma: E := ChangeRing(EllipticCurve([i + 1, i - 1, i, 59*i + 99, 372*i - 410]),K);
 
sage: E = EllipticCurve(K, [i + 1, i - 1, i, 59*i + 99, 372*i - 410])
 
gp (2.8): E = ellinit([i + 1, i - 1, i, 59*i + 99, 372*i - 410],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((-4 i - 7)\) = \( \left(2 i + 1\right) \cdot \left(-3 i - 2\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 65 \) = \( 5 \cdot 13 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((-3321138 i - 6209759)\) = \( \left(2 i + 1\right)^{18} \cdot \left(-3 i - 2\right) \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 49591064453125 \) = \( 5^{18} \cdot 13 \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( -\frac{1110974116587520512}{49591064453125} i - \frac{489671365797093184}{49591064453125} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \( 0 \)
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: 1

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: \(\Z/2\Z\)
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 
Generator: $\left(\frac{23}{2} i - 3 : -\frac{19}{4} i + \frac{29}{4} : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[3]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(2 i + 1\right) \) \(5\) \(2\) \(I_{18}\) Non-split multiplicative \(1\) \(1\) \(18\) \(18\)
\( \left(-3 i - 2\right) \) \(13\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 6, 9 and 18.
Its isogeny class 65.3-a consists of curves linked by isogenies of degrees dividing 18.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.