Learn more

Refine search


Results (10 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
6498.1-a1 6498.1-a \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.134767640$ $0.717655298$ 1.934334224 \( -\frac{69173457625}{42633378} \) \( \bigl[i\) , \( -1\) , \( 0\) , \( -85\) , \( 473\bigr] \) ${y}^2+i{x}{y}={x}^{3}-{x}^{2}-85{x}+473$
6498.1-a2 6498.1-a \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.269535280$ $1.435310597$ 1.934334224 \( \frac{96386901625}{18468} \) \( \bigl[1\) , \( 1\) , \( 0\) , \( -95\) , \( -399\bigr] \) ${y}^2+{x}{y}={x}^{3}+{x}^{2}-95{x}-399$
6498.1-b1 6498.1-b \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 19^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.404885376$ 2.429312260 \( -\frac{8078253774625}{846825858} \) \( \bigl[1\) , \( 0\) , \( 0\) , \( -418\) , \( -3610\bigr] \) ${y}^2+{x}{y}={x}^{3}-418{x}-3610$
6498.1-b2 6498.1-b \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 19^{2} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $1.214656130$ 2.429312260 \( \frac{3616805375}{2105352} \) \( \bigl[1\) , \( 0\) , \( 0\) , \( 32\) , \( 8\bigr] \) ${y}^2+{x}{y}={x}^{3}+32{x}+8$
6498.1-b3 6498.1-b \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 19^{2} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $2.429312260$ 2.429312260 \( \frac{57066625}{32832} \) \( \bigl[i\) , \( 0\) , \( 0\) , \( -8\) , \( 0\bigr] \) ${y}^2+i{x}{y}={x}^{3}-8{x}$
6498.1-b4 6498.1-b \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 19^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.809770753$ 2.429312260 \( \frac{8671983378625}{82308} \) \( \bigl[i\) , \( 0\) , \( 0\) , \( -428\) , \( 3444\bigr] \) ${y}^2+i{x}{y}={x}^{3}-428{x}+3444$
6498.1-c1 6498.1-c \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 19^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.110484662$ 3.314539880 \( -\frac{16576888679672833}{2216253521952} \) \( \bigl[i\) , \( -1\) , \( i\) , \( -5311\) , \( 167551\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}-{x}^{2}-5311{x}+167551$
6498.1-c2 6498.1-c \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 19^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.441938650$ 3.314539880 \( \frac{4824238966273}{537919488} \) \( \bigl[i\) , \( -1\) , \( i\) , \( -351\) , \( 2431\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}-{x}^{2}-351{x}+2431$
6498.1-c3 6498.1-c \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 19^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.220969325$ 3.314539880 \( \frac{18120364883707393}{269485056} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( -5472\) , \( -158079\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-5472{x}-158079$
6498.1-c4 6498.1-c \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{2} \cdot 19^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.110484662$ 3.314539880 \( \frac{74220219816682217473}{16416} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( -87552\) , \( -10007679\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-87552{x}-10007679$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.