# Properties

 Label 2.0.4.1-61250.3-d1 Base field $$\Q(\sqrt{-1})$$ Conductor $$(175i+175)$$ Conductor norm $$61250$$ CM no Base change yes: 350.e1,2800.h1 Q-curve yes Torsion order $$1$$ Rank $$1$$

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Base field$$\Q(\sqrt{-1})$$

Generator $$i$$, with minimal polynomial $$x^{2} + 1$$; class number $$1$$.

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))

gp: K = nfinit(Pol(Vecrev([1, 0, 1])));

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);

## Weierstrass equation

$${y}^2+i{x}{y}={x}^{3}-1138{x}+20858$$
sage: E = EllipticCurve([K([0,1]),K([0,0]),K([0,0]),K([-1138,0]),K([20858,0])])

gp: E = ellinit([Pol(Vecrev([0,1])),Pol(Vecrev([0,0])),Pol(Vecrev([0,0])),Pol(Vecrev([-1138,0])),Pol(Vecrev([20858,0]))], K);

magma: E := EllipticCurve([K![0,1],K![0,0],K![0,0],K![-1138,0],K![20858,0]]);

This is a global minimal model.

sage: E.is_global_minimal_model()

## Invariants

 Conductor: $$(175i+175)$$ = $$(i+1)\cdot(-i-2)^{2}\cdot(2i+1)^{2}\cdot(7)$$ sage: E.conductor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor norm: $$61250$$ = $$2\cdot5^{2}\cdot5^{2}\cdot49$$ sage: E.conductor().norm()  gp: idealnorm(ellglobalred(E)[1])  magma: Norm(Conductor(E)); Discriminant: $$(-91913281250)$$ = $$(i+1)^{2}\cdot(-i-2)^{8}\cdot(2i+1)^{8}\cdot(7)^{6}$$ sage: E.discriminant()  gp: E.disc  magma: Discriminant(E); Discriminant norm: $$8448051270141601562500$$ = $$2^{2}\cdot5^{8}\cdot5^{8}\cdot49^{6}$$ sage: E.discriminant().norm()  gp: norm(E.disc)  magma: Norm(Discriminant(E)); j-invariant: $$-\frac{417267265}{235298}$$ sage: E.j_invariant()  gp: E.j  magma: jInvariant(E); Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) sage: E.has_cm(), E.cm_discriminant()  magma: HasComplexMultiplication(E); Sato-Tate group: $\mathrm{SU}(2)$

## Mordell-Weil group

 Rank: $$1$$ Generator $\left(\frac{29}{2} : -\frac{29}{4} i + \frac{343}{4} : 1\right)$ Height $$1.33170727906737$$ Torsion structure: trivial sage: T = E.torsion_subgroup(); T.invariants()  gp: T = elltors(E); T[2]  magma: T,piT := TorsionSubgroup(E); Invariants(T);

## BSD invariants

 Analytic rank: $$1$$ sage: E.rank()  magma: Rank(E); Mordell-Weil rank: $$1$$ Regulator: $$1.33170727906737$$ Period: $$0.199148010244766$$ Tamagawa product: $$12$$  =  $$2\cdot1\cdot1\cdot( 2 \cdot 3 )$$ Torsion order: $$1$$ Leading coefficient: $$6.36496451651368$$ Analytic order of Ш: $$1$$ (rounded)

## Local data at primes of bad reduction

sage: E.local_data()

magma: LocalInformation(E);

prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord($$\mathfrak{N}$$) ord($$\mathfrak{D}$$) ord$$(j)_{-}$$
$$(i+1)$$ $$2$$ $$2$$ $$I_{2}$$ Split multiplicative $$-1$$ $$1$$ $$2$$ $$2$$
$$(-i-2)$$ $$5$$ $$1$$ $$IV^{*}$$ Additive $$-1$$ $$2$$ $$8$$ $$0$$
$$(2i+1)$$ $$5$$ $$1$$ $$IV^{*}$$ Additive $$-1$$ $$2$$ $$8$$ $$0$$
$$(7)$$ $$49$$ $$6$$ $$I_{6}$$ Split multiplicative $$-1$$ $$1$$ $$6$$ $$6$$

## Galois Representations

The mod $$p$$ Galois Representation has maximal image for all primes $$p < 1000$$ except those listed.

prime Image of Galois Representation
$$3$$ 3B.1.2

## Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 3.
Its isogeny class 61250.3-d consists of curves linked by isogenies of degree 3.

## Base change

This curve is the base change of 350.e1, 2800.h1, defined over $$\Q$$, so it is also a $$\Q$$-curve.