Properties

Label 2.0.4.1-61250.3-b1
Base field \(\Q(\sqrt{-1}) \)
Conductor \((175i+175)\)
Conductor norm \( 61250 \)
CM no
Base change yes: 350.a1,2800.x1
Q-curve yes
Torsion order \( 1 \)
Rank \( 2 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{-1}) \)

Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))
 
gp: K = nfinit(Pol(Vecrev([1, 0, 1])));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);
 

Weierstrass equation

\({y}^2+i{x}{y}={x}^{3}-{x}^{2}-45{x}+185\)
sage: E = EllipticCurve([K([0,1]),K([-1,0]),K([0,0]),K([-45,0]),K([185,0])])
 
gp: E = ellinit([Pol(Vecrev([0,1])),Pol(Vecrev([-1,0])),Pol(Vecrev([0,0])),Pol(Vecrev([-45,0])),Pol(Vecrev([185,0]))], K);
 
magma: E := EllipticCurve([K![0,1],K![-1,0],K![0,0],K![-45,0],K![185,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((175i+175)\) = \((i+1)\cdot(-i-2)^{2}\cdot(2i+1)^{2}\cdot(7)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 61250 \) = \(2\cdot5^{2}\cdot5^{2}\cdot49\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-5882450)\) = \((i+1)^{2}\cdot(-i-2)^{2}\cdot(2i+1)^{2}\cdot(7)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 34603218002500 \) = \(2^{2}\cdot5^{2}\cdot5^{2}\cdot49^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{417267265}{235298} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(2\)
Generators $\left(4 : -2 i - 7 : 1\right)$ $\left(-31 : -156 i : 1\right)$
Heights \(0.140808212661774\) \(0.653095700394043\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 2 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(2\)
Regulator: \( 0.0919612382695750 \)
Period: \( 0.995740051223829 \)
Tamagawa product: \( 12 \)  =  \(2\cdot1\cdot1\cdot( 2 \cdot 3 )\)
Torsion order: \(1\)
Leading coefficient: \( 4.39533542904735 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((i+1)\) \(2\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((-i-2)\) \(5\) \(1\) \(II\) Additive \(1\) \(2\) \(2\) \(0\)
\((2i+1)\) \(5\) \(1\) \(II\) Additive \(1\) \(2\) \(2\) \(0\)
\((7)\) \(49\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 61250.3-b consists of curves linked by isogenies of degree 3.

Base change

This curve is the base change of 350.a1, 2800.x1, defined over \(\Q\), so it is also a \(\Q\)-curve.