Properties

Label 2.0.4.1-58482.1-e2
Base field \(\Q(\sqrt{-1}) \)
Conductor \((171i+171)\)
Conductor norm \( 58482 \)
CM no
Base change yes: 2736.j1,342.f1
Q-curve yes
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{-1}) \)

Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))
 
gp: K = nfinit(Pol(Vecrev([1, 0, 1])));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);
 

Weierstrass equation

\({y}^2+i{x}{y}+i{y}={x}^{3}+{x}^{2}-859{x}-9915\)
sage: E = EllipticCurve([K([0,1]),K([1,0]),K([0,1]),K([-859,0]),K([-9915,0])])
 
gp: E = ellinit([Pol(Vecrev([0,1])),Pol(Vecrev([1,0])),Pol(Vecrev([0,1])),Pol(Vecrev([-859,0])),Pol(Vecrev([-9915,0]))], K);
 
magma: E := EllipticCurve([K![0,1],K![1,0],K![0,1],K![-859,0],K![-9915,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((171i+171)\) = \((i+1)\cdot(3)^{2}\cdot(19)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 58482 \) = \(2\cdot9^{2}\cdot361\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((13463172)\) = \((i+1)^{4}\cdot(3)^{11}\cdot(19)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 181257000301584 \) = \(2^{4}\cdot9^{11}\cdot361\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{96386901625}{18468} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(79 : -40 i + 648 : 1\right)$
Height \(1.74774532248411\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-17 : 8 i : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.74774532248411 \)
Period: \( 0.478436865967424 \)
Tamagawa product: \( 16 \)  =  \(2^{2}\cdot2^{2}\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 6.68948635678818 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((i+1)\) \(2\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)
\((3)\) \(9\) \(4\) \(I_{5}^{*}\) Additive \(1\) \(2\) \(11\) \(5\)
\((19)\) \(361\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 58482.1-e consists of curves linked by isogenies of degree 2.

Base change

This curve is the base change of 2736.j1, 342.f1, defined over \(\Q\), so it is also a \(\Q\)-curve.