Learn more

Refine search


Results (19 matches)

  Download to        
Label Class Base field Conductor norm Rank Torsion CM Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
58482.1-a1 58482.1-a \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{4} \cdot 19^{2} \) $2$ $\Z/2\Z$ $0.237879944$ $3.855564791$ 3.668646161 \( \frac{132651}{76} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -3\) , \( 1\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}-3{x}+1$
58482.1-a2 58482.1-a \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{4} \cdot 19^{2} \) $2$ $\Z/2\Z$ $0.237879944$ $1.927782395$ 3.668646161 \( \frac{149721291}{722} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -33\) , \( -65\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}-33{x}-65$
58482.1-b1 58482.1-b \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{4} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $0.036828220$ 1.178503068 \( -\frac{16576888679672833}{2216253521952} \) \( \bigl[i\) , \( 1\) , \( 0\) , \( -47808\) , \( -4476064\bigr] \) ${y}^2+i{x}{y}={x}^{3}+{x}^{2}-47808{x}-4476064$
58482.1-b2 58482.1-b \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{4} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $0.147312883$ 1.178503068 \( \frac{4824238966273}{537919488} \) \( \bigl[i\) , \( 1\) , \( 0\) , \( -3168\) , \( -62464\bigr] \) ${y}^2+i{x}{y}={x}^{3}+{x}^{2}-3168{x}-62464$
58482.1-b3 58482.1-b \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{4} \cdot 19^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $0.073656441$ 1.178503068 \( \frac{18120364883707393}{269485056} \) \( \bigl[i\) , \( 1\) , \( 0\) , \( -49248\) , \( -4218880\bigr] \) ${y}^2+i{x}{y}={x}^{3}+{x}^{2}-49248{x}-4218880$
58482.1-b4 58482.1-b \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{4} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $0.036828220$ 1.178503068 \( \frac{74220219816682217473}{16416} \) \( \bigl[i\) , \( 1\) , \( 0\) , \( -787968\) , \( -269419360\bigr] \) ${y}^2+i{x}{y}={x}^{3}+{x}^{2}-787968{x}-269419360$
58482.1-c1 58482.1-c \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{4} \cdot 19^{2} \) $2$ $\Z/6\Z$ $6.214136413$ $0.134961792$ 4.472911933 \( -\frac{8078253774625}{846825858} \) \( \bigl[i\) , \( 1\) , \( 0\) , \( -3762\) , \( -97470\bigr] \) ${y}^2+i{x}{y}={x}^{3}+{x}^{2}-3762{x}-97470$
58482.1-c2 58482.1-c \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{4} \cdot 19^{2} \) $2$ $\Z/2\Z$ $0.690459601$ $0.404885376$ 4.472911933 \( \frac{3616805375}{2105352} \) \( \bigl[i\) , \( 1\) , \( 0\) , \( 288\) , \( 216\bigr] \) ${y}^2+i{x}{y}={x}^{3}+{x}^{2}+288{x}+216$
58482.1-c3 58482.1-c \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{4} \cdot 19^{2} \) $2$ $\Z/2\Z$ $0.690459601$ $0.809770753$ 4.472911933 \( \frac{57066625}{32832} \) \( \bigl[i\) , \( 1\) , \( 0\) , \( -72\) , \( 0\bigr] \) ${y}^2+i{x}{y}={x}^{3}+{x}^{2}-72{x}$
58482.1-c4 58482.1-c \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{4} \cdot 19^{2} \) $2$ $\Z/6\Z$ $6.214136413$ $0.269923584$ 4.472911933 \( \frac{8671983378625}{82308} \) \( \bigl[i\) , \( 1\) , \( 0\) , \( -3852\) , \( -92988\bigr] \) ${y}^2+i{x}{y}={x}^{3}+{x}^{2}-3852{x}-92988$
58482.1-d1 58482.1-d \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{4} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $0.321685320$ 3.216853208 \( -\frac{37966934881}{4952198} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -630\) , \( 6898\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}-630{x}+6898$
58482.1-d2 58482.1-d \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{4} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $1.608426604$ 3.216853208 \( -\frac{1}{608} \) \( \bigl[i\) , \( 1\) , \( 0\) , \( 0\) , \( 32\bigr] \) ${y}^2+i{x}{y}={x}^{3}+{x}^{2}+32$
58482.1-e1 58482.1-e \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{4} \cdot 19^{2} \) $1$ $\Z/2\Z$ $3.495490644$ $0.239218432$ 6.689486356 \( -\frac{69173457625}{42633378} \) \( \bigl[i\) , \( 1\) , \( i\) , \( -769\) , \( -12003\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}+{x}^{2}-769{x}-12003$
58482.1-e2 58482.1-e \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{4} \cdot 19^{2} \) $1$ $\Z/2\Z$ $1.747745322$ $0.478436865$ 6.689486356 \( \frac{96386901625}{18468} \) \( \bigl[i\) , \( 1\) , \( i\) , \( -859\) , \( -9915\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}+{x}^{2}-859{x}-9915$
58482.1-f1 58482.1-f \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{4} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $0.504387587$ $1.136863399$ 6.881037449 \( -\frac{413493625}{152} \) \( \bigl[i\) , \( 1\) , \( i\) , \( -139\) , \( 601\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}+{x}^{2}-139{x}+601$
58482.1-f2 58482.1-f \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{4} \cdot 19^{2} \) $1$ $\Z/3\Z$ $4.539488286$ $0.126318155$ 6.881037449 \( -\frac{69173457625}{2550136832} \) \( \bigl[i\) , \( 1\) , \( i\) , \( -769\) , \( -66305\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}+{x}^{2}-769{x}-66305$
58482.1-f3 58482.1-f \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{4} \cdot 19^{2} \) $1$ $\Z/3\Z$ $1.513162762$ $0.378954466$ 6.881037449 \( \frac{94196375}{3511808} \) \( \bigl[i\) , \( 1\) , \( i\) , \( 86\) , \( 2437\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}+{x}^{2}+86{x}+2437$
58482.1-g1 58482.1-g \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{4} \cdot 19^{2} \) $1$ $\Z/2\Z$ $1.551718204$ $1.285188263$ 7.977000101 \( \frac{132651}{76} \) \( \bigl[i\) , \( 1\) , \( i\) , \( -28\) , \( -1\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}+{x}^{2}-28{x}-1$
58482.1-g2 58482.1-g \(\Q(\sqrt{-1}) \) \( 2 \cdot 3^{4} \cdot 19^{2} \) $1$ $\Z/2\Z$ $3.103436408$ $0.642594131$ 7.977000101 \( \frac{149721291}{722} \) \( \bigl[i\) , \( 1\) , \( i\) , \( -298\) , \( -2053\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}+{x}^{2}-298{x}-2053$
  Download to        

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.