57800.4-a1
57800.4-a
2 2 2
2 2 2
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
57800.4
2 3 ⋅ 5 2 ⋅ 1 7 2 2^{3} \cdot 5^{2} \cdot 17^{2} 2 3 ⋅ 5 2 ⋅ 1 7 2
2 10 ⋅ 5 4 ⋅ 1 7 3 2^{10} \cdot 5^{4} \cdot 17^{3} 2 1 0 ⋅ 5 4 ⋅ 1 7 3
2.77109 2.77109 2 . 7 7 1 0 9
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 ) (a+1), (-a-2), (2a+1), (a+4) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 2 2^{2} 2 2
1 1 1
2.137996157 2.137996157 2 . 1 3 7 9 9 6 1 5 7
2.137996157
− 71702 125 a + 470336 125 -\frac{71702}{125} a + \frac{470336}{125} − 1 2 5 7 1 7 0 2 a + 1 2 5 4 7 0 3 3 6
[ i + 1 \bigl[i + 1 [ i + 1 , i − 1 i - 1 i − 1 , i + 1 i + 1 i + 1 , 8 i + 7 8 i + 7 8 i + 7 , − 3 i + 5 ] -3 i + 5\bigr] − 3 i + 5 ]
y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + ( i − 1 ) x 2 + ( 8 i + 7 ) x − 3 i + 5 {y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(i-1\right){x}^{2}+\left(8i+7\right){x}-3i+5 y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + ( i − 1 ) x 2 + ( 8 i + 7 ) x − 3 i + 5
57800.4-a2
57800.4-a
2 2 2
2 2 2
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
57800.4
2 3 ⋅ 5 2 ⋅ 1 7 2 2^{3} \cdot 5^{2} \cdot 17^{2} 2 3 ⋅ 5 2 ⋅ 1 7 2
2 11 ⋅ 5 8 ⋅ 1 7 3 2^{11} \cdot 5^{8} \cdot 17^{3} 2 1 1 ⋅ 5 8 ⋅ 1 7 3
2.77109 2.77109 2 . 7 7 1 0 9
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 ) (a+1), (-a-2), (2a+1), (a+4) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
1 1 1
1.068998078 1.068998078 1 . 0 6 8 9 9 8 0 7 8
2.137996157
70930131 15625 a + 299889467 15625 \frac{70930131}{15625} a + \frac{299889467}{15625} 1 5 6 2 5 7 0 9 3 0 1 3 1 a + 1 5 6 2 5 2 9 9 8 8 9 4 6 7
[ i + 1 \bigl[i + 1 [ i + 1 , i − 1 i - 1 i − 1 , i + 1 i + 1 i + 1 , 58 i + 37 58 i + 37 5 8 i + 3 7 , 7 i − 261 ] 7 i - 261\bigr] 7 i − 2 6 1 ]
y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + ( i − 1 ) x 2 + ( 58 i + 37 ) x + 7 i − 261 {y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(i-1\right){x}^{2}+\left(58i+37\right){x}+7i-261 y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + ( i − 1 ) x 2 + ( 5 8 i + 3 7 ) x + 7 i − 2 6 1
57800.4-b1
57800.4-b
2 2 2
2 2 2
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
57800.4
2 3 ⋅ 5 2 ⋅ 1 7 2 2^{3} \cdot 5^{2} \cdot 17^{2} 2 3 ⋅ 5 2 ⋅ 1 7 2
2 10 ⋅ 5 4 ⋅ 1 7 9 2^{10} \cdot 5^{4} \cdot 17^{9} 2 1 0 ⋅ 5 4 ⋅ 1 7 9
2.77109 2.77109 2 . 7 7 1 0 9
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 ) (a+1), (-a-2), (2a+1), (a+4) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 2 ⋅ 3 2^{2} \cdot 3 2 2 ⋅ 3
1 1 1
0.518540234 0.518540234 0 . 5 1 8 5 4 0 2 3 4
1.555620703
− 71702 125 a + 470336 125 -\frac{71702}{125} a + \frac{470336}{125} − 1 2 5 7 1 7 0 2 a + 1 2 5 4 7 0 3 3 6
[ i + 1 \bigl[i + 1 [ i + 1 , − i − 1 -i - 1 − i − 1 , i + 1 i + 1 i + 1 , − 210 i − 31 -210 i - 31 − 2 1 0 i − 3 1 , 849 i − 449 ] 849 i - 449\bigr] 8 4 9 i − 4 4 9 ]
y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + ( − i − 1 ) x 2 + ( − 210 i − 31 ) x + 849 i − 449 {y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(-210i-31\right){x}+849i-449 y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + ( − i − 1 ) x 2 + ( − 2 1 0 i − 3 1 ) x + 8 4 9 i − 4 4 9
57800.4-b2
57800.4-b
2 2 2
2 2 2
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
57800.4
2 3 ⋅ 5 2 ⋅ 1 7 2 2^{3} \cdot 5^{2} \cdot 17^{2} 2 3 ⋅ 5 2 ⋅ 1 7 2
2 11 ⋅ 5 8 ⋅ 1 7 9 2^{11} \cdot 5^{8} \cdot 17^{9} 2 1 1 ⋅ 5 8 ⋅ 1 7 9
2.77109 2.77109 2 . 7 7 1 0 9
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 ) (a+1), (-a-2), (2a+1), (a+4) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 3 ⋅ 3 2^{3} \cdot 3 2 3 ⋅ 3
1 1 1
0.259270117 0.259270117 0 . 2 5 9 2 7 0 1 1 7
1.555620703
70930131 15625 a + 299889467 15625 \frac{70930131}{15625} a + \frac{299889467}{15625} 1 5 6 2 5 7 0 9 3 0 1 3 1 a + 1 5 6 2 5 2 9 9 8 8 9 4 6 7
[ i + 1 \bigl[i + 1 [ i + 1 , − i − 1 -i - 1 − i − 1 , i + 1 i + 1 i + 1 , − 1200 i − 81 -1200 i - 81 − 1 2 0 0 i − 8 1 , − 11373 i + 9653 ] -11373 i + 9653\bigr] − 1 1 3 7 3 i + 9 6 5 3 ]
y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + ( − i − 1 ) x 2 + ( − 1200 i − 81 ) x − 11373 i + 9653 {y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(-1200i-81\right){x}-11373i+9653 y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + ( − i − 1 ) x 2 + ( − 1 2 0 0 i − 8 1 ) x − 1 1 3 7 3 i + 9 6 5 3
57800.4-c1
57800.4-c
6 6 6
8 8 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
57800.4
2 3 ⋅ 5 2 ⋅ 1 7 2 2^{3} \cdot 5^{2} \cdot 17^{2} 2 3 ⋅ 5 2 ⋅ 1 7 2
2 8 ⋅ 5 4 ⋅ 1 7 7 2^{8} \cdot 5^{4} \cdot 17^{7} 2 8 ⋅ 5 4 ⋅ 1 7 7
2.77109 2.77109 2 . 7 7 1 0 9
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 ) (a+1), (-a-2), (2a+1), (a+4) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 )
1 1 1
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 6 2^{6} 2 6
2.303606929 2.303606929 2 . 3 0 3 6 0 6 9 2 9
0.217024174 0.217024174 0 . 2 1 7 0 2 4 1 7 4
3.999507146
− 2226135040016 425 a − 4178441913604 425 -\frac{2226135040016}{425} a - \frac{4178441913604}{425} − 4 2 5 2 2 2 6 1 3 5 0 4 0 0 1 6 a − 4 2 5 4 1 7 8 4 4 1 9 1 3 6 0 4
[ i + 1 \bigl[i + 1 [ i + 1 , i + 1 i + 1 i + 1 , 0 0 0 , − 6933 i + 6265 -6933 i + 6265 − 6 9 3 3 i + 6 2 6 5 , 109144 i + 335983 ] 109144 i + 335983\bigr] 1 0 9 1 4 4 i + 3 3 5 9 8 3 ]
y 2 + ( i + 1 ) x y = x 3 + ( i + 1 ) x 2 + ( − 6933 i + 6265 ) x + 109144 i + 335983 {y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(i+1\right){x}^{2}+\left(-6933i+6265\right){x}+109144i+335983 y 2 + ( i + 1 ) x y = x 3 + ( i + 1 ) x 2 + ( − 6 9 3 3 i + 6 2 6 5 ) x + 1 0 9 1 4 4 i + 3 3 5 9 8 3
57800.4-c2
57800.4-c
6 6 6
8 8 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
57800.4
2 3 ⋅ 5 2 ⋅ 1 7 2 2^{3} \cdot 5^{2} \cdot 17^{2} 2 3 ⋅ 5 2 ⋅ 1 7 2
2 4 ⋅ 5 8 ⋅ 1 7 8 2^{4} \cdot 5^{8} \cdot 17^{8} 2 4 ⋅ 5 8 ⋅ 1 7 8
2.77109 2.77109 2 . 7 7 1 0 9
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 ) (a+1), (-a-2), (2a+1), (a+4) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 )
1 1 1
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2Cs
1 1 1
2 6 2^{6} 2 6
1.151803464 1.151803464 1 . 1 5 1 8 0 3 4 6 4
0.434048349 0.434048349 0 . 4 3 4 0 4 8 3 4 9
3.999507146
18495673728 180625 a − 897072368 36125 \frac{18495673728}{180625} a - \frac{897072368}{36125} 1 8 0 6 2 5 1 8 4 9 5 6 7 3 7 2 8 a − 3 6 1 2 5 8 9 7 0 7 2 3 6 8
[ i + 1 \bigl[i + 1 [ i + 1 , i + 1 i + 1 i + 1 , 0 0 0 , − 433 i + 390 -433 i + 390 − 4 3 3 i + 3 9 0 , 1769 i + 5508 ] 1769 i + 5508\bigr] 1 7 6 9 i + 5 5 0 8 ]
y 2 + ( i + 1 ) x y = x 3 + ( i + 1 ) x 2 + ( − 433 i + 390 ) x + 1769 i + 5508 {y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(i+1\right){x}^{2}+\left(-433i+390\right){x}+1769i+5508 y 2 + ( i + 1 ) x y = x 3 + ( i + 1 ) x 2 + ( − 4 3 3 i + 3 9 0 ) x + 1 7 6 9 i + 5 5 0 8
57800.4-c3
57800.4-c
6 6 6
8 8 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
57800.4
2 3 ⋅ 5 2 ⋅ 1 7 2 2^{3} \cdot 5^{2} \cdot 17^{2} 2 3 ⋅ 5 2 ⋅ 1 7 2
2 10 ⋅ 5 5 ⋅ 1 7 14 2^{10} \cdot 5^{5} \cdot 17^{14} 2 1 0 ⋅ 5 5 ⋅ 1 7 1 4
2.77109 2.77109 2 . 7 7 1 0 9
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 ) (a+1), (-a-2), (2a+1), (a+4) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 4 2^{4} 2 4
4.607213858 4.607213858 4 . 6 0 7 2 1 3 8 5 8
0.108512087 0.108512087 0 . 1 0 8 5 1 2 0 8 7
3.999507146
− 624467745025896476 4359848400625 a − 74500491067519382 4359848400625 -\frac{624467745025896476}{4359848400625} a - \frac{74500491067519382}{4359848400625} − 4 3 5 9 8 4 8 4 0 0 6 2 5 6 2 4 4 6 7 7 4 5 0 2 5 8 9 6 4 7 6 a − 4 3 5 9 8 4 8 4 0 0 6 2 5 7 4 5 0 0 4 9 1 0 6 7 5 1 9 3 8 2
[ i + 1 \bigl[i + 1 [ i + 1 , i + 1 i + 1 i + 1 , 0 0 0 , 5887 i + 7905 5887 i + 7905 5 8 8 7 i + 7 9 0 5 , − 212070 i + 307155 ] -212070 i + 307155\bigr] − 2 1 2 0 7 0 i + 3 0 7 1 5 5 ]
y 2 + ( i + 1 ) x y = x 3 + ( i + 1 ) x 2 + ( 5887 i + 7905 ) x − 212070 i + 307155 {y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(i+1\right){x}^{2}+\left(5887i+7905\right){x}-212070i+307155 y 2 + ( i + 1 ) x y = x 3 + ( i + 1 ) x 2 + ( 5 8 8 7 i + 7 9 0 5 ) x − 2 1 2 0 7 0 i + 3 0 7 1 5 5
57800.4-c4
57800.4-c
6 6 6
8 8 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
57800.4
2 3 ⋅ 5 2 ⋅ 1 7 2 2^{3} \cdot 5^{2} \cdot 17^{2} 2 3 ⋅ 5 2 ⋅ 1 7 2
2 8 ⋅ 5 10 ⋅ 1 7 10 2^{8} \cdot 5^{10} \cdot 17^{10} 2 8 ⋅ 5 1 0 ⋅ 1 7 1 0
2.77109 2.77109 2 . 7 7 1 0 9
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 ) (a+1), (-a-2), (2a+1), (a+4) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 )
1 1 1
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2Cs
1 1 1
2 6 2^{6} 2 6
2.303606929 2.303606929 2 . 3 0 3 6 0 6 9 2 9
0.217024174 0.217024174 0 . 2 1 7 0 2 4 1 7 4
3.999507146
1142278337424 32625390625 a + 4669682943668 32625390625 \frac{1142278337424}{32625390625} a + \frac{4669682943668}{32625390625} 3 2 6 2 5 3 9 0 6 2 5 1 1 4 2 2 7 8 3 3 7 4 2 4 a + 3 2 6 2 5 3 9 0 6 2 5 4 6 6 9 6 8 2 9 4 3 6 6 8
[ i + 1 \bigl[i + 1 [ i + 1 , i + 1 i + 1 i + 1 , 0 0 0 , − 13 i + 455 -13 i + 455 − 1 3 i + 4 5 5 , − 1940 i + 12245 ] -1940 i + 12245\bigr] − 1 9 4 0 i + 1 2 2 4 5 ]
y 2 + ( i + 1 ) x y = x 3 + ( i + 1 ) x 2 + ( − 13 i + 455 ) x − 1940 i + 12245 {y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(i+1\right){x}^{2}+\left(-13i+455\right){x}-1940i+12245 y 2 + ( i + 1 ) x y = x 3 + ( i + 1 ) x 2 + ( − 1 3 i + 4 5 5 ) x − 1 9 4 0 i + 1 2 2 4 5
57800.4-c5
57800.4-c
6 6 6
8 8 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
57800.4
2 3 ⋅ 5 2 ⋅ 1 7 2 2^{3} \cdot 5^{2} \cdot 17^{2} 2 3 ⋅ 5 2 ⋅ 1 7 2
2 8 ⋅ 5 10 ⋅ 1 7 7 2^{8} \cdot 5^{10} \cdot 17^{7} 2 8 ⋅ 5 1 0 ⋅ 1 7 7
2.77109 2.77109 2 . 7 7 1 0 9
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 ) (a+1), (-a-2), (2a+1), (a+4) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 )
1 1 1
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 7 2^{7} 2 7
0.575901732 0.575901732 0 . 5 7 5 9 0 1 7 3 2
0.434048349 0.434048349 0 . 4 3 4 0 4 8 3 4 9
3.999507146
− 2845155328 6640625 a + 8254109696 6640625 -\frac{2845155328}{6640625} a + \frac{8254109696}{6640625} − 6 6 4 0 6 2 5 2 8 4 5 1 5 5 3 2 8 a + 6 6 4 0 6 2 5 8 2 5 4 1 0 9 6 9 6
[ 0 \bigl[0 [ 0 , − i -i − i , 0 0 0 , 216 i − 77 216 i - 77 2 1 6 i − 7 7 , 261 i + 979 ] 261 i + 979\bigr] 2 6 1 i + 9 7 9 ]
y 2 = x 3 − i x 2 + ( 216 i − 77 ) x + 261 i + 979 {y}^2={x}^{3}-i{x}^{2}+\left(216i-77\right){x}+261i+979 y 2 = x 3 − i x 2 + ( 2 1 6 i − 7 7 ) x + 2 6 1 i + 9 7 9
57800.4-c6
57800.4-c
6 6 6
8 8 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
57800.4
2 3 ⋅ 5 2 ⋅ 1 7 2 2^{3} \cdot 5^{2} \cdot 17^{2} 2 3 ⋅ 5 2 ⋅ 1 7 2
2 10 ⋅ 5 17 ⋅ 1 7 8 2^{10} \cdot 5^{17} \cdot 17^{8} 2 1 0 ⋅ 5 1 7 ⋅ 1 7 8
2.77109 2.77109 2 . 7 7 1 0 9
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 ) (a+1), (-a-2), (2a+1), (a+4) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 4 2^{4} 2 4
4.607213858 4.607213858 4 . 6 0 7 2 1 3 8 5 8
0.108512087 0.108512087 0 . 1 0 8 5 1 2 0 8 7
3.999507146
− 54765023102363044 44097900390625 a + 449923792854324742 44097900390625 -\frac{54765023102363044}{44097900390625} a + \frac{449923792854324742}{44097900390625} − 4 4 0 9 7 9 0 0 3 9 0 6 2 5 5 4 7 6 5 0 2 3 1 0 2 3 6 3 0 4 4 a + 4 4 0 9 7 9 0 0 3 9 0 6 2 5 4 4 9 9 2 3 7 9 2 8 5 4 3 2 4 7 4 2
[ i + 1 \bigl[i + 1 [ i + 1 , i + 1 i + 1 i + 1 , 0 0 0 , 807 i − 5955 807 i - 5955 8 0 7 i − 5 9 5 5 , − 37466 i + 157543 ] -37466 i + 157543\bigr] − 3 7 4 6 6 i + 1 5 7 5 4 3 ]
y 2 + ( i + 1 ) x y = x 3 + ( i + 1 ) x 2 + ( 807 i − 5955 ) x − 37466 i + 157543 {y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(i+1\right){x}^{2}+\left(807i-5955\right){x}-37466i+157543 y 2 + ( i + 1 ) x y = x 3 + ( i + 1 ) x 2 + ( 8 0 7 i − 5 9 5 5 ) x − 3 7 4 6 6 i + 1 5 7 5 4 3
57800.4-d1
57800.4-d
1 1 1
1 1 1
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
57800.4
2 3 ⋅ 5 2 ⋅ 1 7 2 2^{3} \cdot 5^{2} \cdot 17^{2} 2 3 ⋅ 5 2 ⋅ 1 7 2
2 4 ⋅ 5 2 ⋅ 1 7 2 2^{4} \cdot 5^{2} \cdot 17^{2} 2 4 ⋅ 5 2 ⋅ 1 7 2
2.77109 2.77109 2 . 7 7 1 0 9
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 ) (a+1), (-a-2), (2a+1), (a+4) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
1 1 1
2 2 2
0.207456378 0.207456378 0 . 2 0 7 4 5 6 3 7 8
5.029645956 5.029645956 5 . 0 2 9 6 4 5 9 5 6
4.173728546
− 2048 a − 6144 5 -2048 a - \frac{6144}{5} − 2 0 4 8 a − 5 6 1 4 4
[ 0 \bigl[0 [ 0 , − i -i − i , i + 1 i + 1 i + 1 , i − 2 i - 2 i − 2 , − i + 1 ] -i + 1\bigr] − i + 1 ]
y 2 + ( i + 1 ) y = x 3 − i x 2 + ( i − 2 ) x − i + 1 {y}^2+\left(i+1\right){y}={x}^{3}-i{x}^{2}+\left(i-2\right){x}-i+1 y 2 + ( i + 1 ) y = x 3 − i x 2 + ( i − 2 ) x − i + 1
57800.4-e1
57800.4-e
10 10 1 0
16 16 1 6
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
57800.4
2 3 ⋅ 5 2 ⋅ 1 7 2 2^{3} \cdot 5^{2} \cdot 17^{2} 2 3 ⋅ 5 2 ⋅ 1 7 2
2 10 ⋅ 5 10 ⋅ 1 7 6 2^{10} \cdot 5^{10} \cdot 17^{6} 2 1 0 ⋅ 5 1 0 ⋅ 1 7 6
2.77109 2.77109 2 . 7 7 1 0 9
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 ) (a+1), (-a-2), (2a+1), (a+4) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2Cs
1 1 1
2 7 2^{7} 2 7
1 1 1
0.363426171 0.363426171 0 . 3 6 3 4 2 6 1 7 1
2.907409369
− 35999730234 390625 a − 51700389912 390625 -\frac{35999730234}{390625} a - \frac{51700389912}{390625} − 3 9 0 6 2 5 3 5 9 9 9 7 3 0 2 3 4 a − 3 9 0 6 2 5 5 1 7 0 0 3 8 9 9 1 2
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , 0 0 0 , 796 i + 408 796 i + 408 7 9 6 i + 4 0 8 , 936 i + 9924 ] 936 i + 9924\bigr] 9 3 6 i + 9 9 2 4 ]
y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( 796 i + 408 ) x + 936 i + 9924 {y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(796i+408\right){x}+936i+9924 y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( 7 9 6 i + 4 0 8 ) x + 9 3 6 i + 9 9 2 4
57800.4-e2
57800.4-e
10 10 1 0
16 16 1 6
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
57800.4
2 3 ⋅ 5 2 ⋅ 1 7 2 2^{3} \cdot 5^{2} \cdot 17^{2} 2 3 ⋅ 5 2 ⋅ 1 7 2
2 10 ⋅ 5 10 ⋅ 1 7 6 2^{10} \cdot 5^{10} \cdot 17^{6} 2 1 0 ⋅ 5 1 0 ⋅ 1 7 6
2.77109 2.77109 2 . 7 7 1 0 9
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 ) (a+1), (-a-2), (2a+1), (a+4) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2Cs
4 4 4
2 5 2^{5} 2 5
1 1 1
0.363426171 0.363426171 0 . 3 6 3 4 2 6 1 7 1
2.907409369
35999730234 390625 a − 51700389912 390625 \frac{35999730234}{390625} a - \frac{51700389912}{390625} 3 9 0 6 2 5 3 5 9 9 9 7 3 0 2 3 4 a − 3 9 0 6 2 5 5 1 7 0 0 3 8 9 9 1 2
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , 0 0 0 , − 104 i + 888 -104 i + 888 − 1 0 4 i + 8 8 8 , 10640 i + 1820 ] 10640 i + 1820\bigr] 1 0 6 4 0 i + 1 8 2 0 ]
y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( − 104 i + 888 ) x + 10640 i + 1820 {y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-104i+888\right){x}+10640i+1820 y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( − 1 0 4 i + 8 8 8 ) x + 1 0 6 4 0 i + 1 8 2 0
57800.4-e3
57800.4-e
10 10 1 0
16 16 1 6
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
57800.4
2 3 ⋅ 5 2 ⋅ 1 7 2 2^{3} \cdot 5^{2} \cdot 17^{2} 2 3 ⋅ 5 2 ⋅ 1 7 2
2 8 ⋅ 5 8 ⋅ 1 7 6 2^{8} \cdot 5^{8} \cdot 17^{6} 2 8 ⋅ 5 8 ⋅ 1 7 6
2.77109 2.77109 2 . 7 7 1 0 9
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 ) (a+1), (-a-2), (2a+1), (a+4) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2Cs
1 1 1
2 6 2^{6} 2 6
1 1 1
0.726852342 0.726852342 0 . 7 2 6 8 5 2 3 4 2
2.907409369
237276 625 \frac{237276}{625} 6 2 5 2 3 7 2 7 6
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , 0 0 0 , 26 i + 48 26 i + 48 2 6 i + 4 8 , 224 i + 208 ] 224 i + 208\bigr] 2 2 4 i + 2 0 8 ]
y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( 26 i + 48 ) x + 224 i + 208 {y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(26i+48\right){x}+224i+208 y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( 2 6 i + 4 8 ) x + 2 2 4 i + 2 0 8
57800.4-e4
57800.4-e
10 10 1 0
16 16 1 6
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
57800.4
2 3 ⋅ 5 2 ⋅ 1 7 2 2^{3} \cdot 5^{2} \cdot 17^{2} 2 3 ⋅ 5 2 ⋅ 1 7 2
2 11 ⋅ 5 17 ⋅ 1 7 6 2^{11} \cdot 5^{17} \cdot 17^{6} 2 1 1 ⋅ 5 1 7 ⋅ 1 7 6
2.77109 2.77109 2 . 7 7 1 0 9
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 ) (a+1), (-a-2), (2a+1), (a+4) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
16 16 1 6
2 2 2^{2} 2 2
1 1 1
0.181713085 0.181713085 0 . 1 8 1 7 1 3 0 8 5
2.907409369
− 22845545233191 152587890625 a + 135893651813613 152587890625 -\frac{22845545233191}{152587890625} a + \frac{135893651813613}{152587890625} − 1 5 2 5 8 7 8 9 0 6 2 5 2 2 8 4 5 5 4 5 2 3 3 1 9 1 a + 1 5 2 5 8 7 8 9 0 6 2 5 1 3 5 8 9 3 6 5 1 8 1 3 6 1 3
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , 0 0 0 , − 634 i + 978 -634 i + 978 − 6 3 4 i + 9 7 8 , 9964 i − 11152 ] 9964 i - 11152\bigr] 9 9 6 4 i − 1 1 1 5 2 ]
y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( − 634 i + 978 ) x + 9964 i − 11152 {y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-634i+978\right){x}+9964i-11152 y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( − 6 3 4 i + 9 7 8 ) x + 9 9 6 4 i − 1 1 1 5 2
57800.4-e5
57800.4-e
10 10 1 0
16 16 1 6
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
57800.4
2 3 ⋅ 5 2 ⋅ 1 7 2 2^{3} \cdot 5^{2} \cdot 17^{2} 2 3 ⋅ 5 2 ⋅ 1 7 2
2 11 ⋅ 5 17 ⋅ 1 7 6 2^{11} \cdot 5^{17} \cdot 17^{6} 2 1 1 ⋅ 5 1 7 ⋅ 1 7 6
2.77109 2.77109 2 . 7 7 1 0 9
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 ) (a+1), (-a-2), (2a+1), (a+4) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 6 2^{6} 2 6
1 1 1
0.181713085 0.181713085 0 . 1 8 1 7 1 3 0 8 5
2.907409369
22845545233191 152587890625 a + 135893651813613 152587890625 \frac{22845545233191}{152587890625} a + \frac{135893651813613}{152587890625} 1 5 2 5 8 7 8 9 0 6 2 5 2 2 8 4 5 5 4 5 2 3 3 1 9 1 a + 1 5 2 5 8 7 8 9 0 6 2 5 1 3 5 8 9 3 6 5 1 8 1 3 6 1 3
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , 0 0 0 , 1166 i + 18 1166 i + 18 1 1 6 6 i + 1 8 , − 12356 i + 7688 ] -12356 i + 7688\bigr] − 1 2 3 5 6 i + 7 6 8 8 ]
y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( 1166 i + 18 ) x − 12356 i + 7688 {y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(1166i+18\right){x}-12356i+7688 y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( 1 1 6 6 i + 1 8 ) x − 1 2 3 5 6 i + 7 6 8 8
57800.4-e6
57800.4-e
10 10 1 0
16 16 1 6
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
57800.4
2 3 ⋅ 5 2 ⋅ 1 7 2 2^{3} \cdot 5^{2} \cdot 17^{2} 2 3 ⋅ 5 2 ⋅ 1 7 2
2 4 ⋅ 5 4 ⋅ 1 7 6 2^{4} \cdot 5^{4} \cdot 17^{6} 2 4 ⋅ 5 4 ⋅ 1 7 6
2.77109 2.77109 2 . 7 7 1 0 9
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 ) (a+1), (-a-2), (2a+1), (a+4) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2Cs
1 1 1
2 5 2^{5} 2 5
1 1 1
1.453704684 1.453704684 1 . 4 5 3 7 0 4 6 8 4
2.907409369
148176 25 \frac{148176}{25} 2 5 1 4 8 1 7 6
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , 0 0 0 , − 14 i − 27 -14 i - 27 − 1 4 i − 2 7 , 22 i + 46 ] 22 i + 46\bigr] 2 2 i + 4 6 ]
y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( − 14 i − 27 ) x + 22 i + 46 {y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-14i-27\right){x}+22i+46 y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( − 1 4 i − 2 7 ) x + 2 2 i + 4 6
57800.4-e7
57800.4-e
10 10 1 0
16 16 1 6
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
57800.4
2 3 ⋅ 5 2 ⋅ 1 7 2 2^{3} \cdot 5^{2} \cdot 17^{2} 2 3 ⋅ 5 2 ⋅ 1 7 2
2 8 ⋅ 5 2 ⋅ 1 7 6 2^{8} \cdot 5^{2} \cdot 17^{6} 2 8 ⋅ 5 2 ⋅ 1 7 6
2.77109 2.77109 2 . 7 7 1 0 9
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 ) (a+1), (-a-2), (2a+1), (a+4) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
1 1 1
1.453704684 1.453704684 1 . 4 5 3 7 0 4 6 8 4
2.907409369
55296 5 \frac{55296}{5} 5 5 5 2 9 6
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , 16 i + 30 16 i + 30 1 6 i + 3 0 , 52 i − 47 ] 52 i - 47\bigr] 5 2 i − 4 7 ]
y 2 = x 3 + ( 16 i + 30 ) x + 52 i − 47 {y}^2={x}^{3}+\left(16i+30\right){x}+52i-47 y 2 = x 3 + ( 1 6 i + 3 0 ) x + 5 2 i − 4 7
57800.4-e8
57800.4-e
10 10 1 0
16 16 1 6
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
57800.4
2 3 ⋅ 5 2 ⋅ 1 7 2 2^{3} \cdot 5^{2} \cdot 17^{2} 2 3 ⋅ 5 2 ⋅ 1 7 2
2 8 ⋅ 5 2 ⋅ 1 7 6 2^{8} \cdot 5^{2} \cdot 17^{6} 2 8 ⋅ 5 2 ⋅ 1 7 6
2.77109 2.77109 2 . 7 7 1 0 9
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 ) (a+1), (-a-2), (2a+1), (a+4) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
4 4 4
2 2 2^{2} 2 2
1 1 1
0.726852342 0.726852342 0 . 7 2 6 8 5 2 3 4 2
2.907409369
132304644 5 \frac{132304644}{5} 5 1 3 2 3 0 4 6 4 4
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , 0 0 0 , − 214 i − 402 -214 i - 402 − 2 1 4 i − 4 0 2 , 2302 i + 2876 ] 2302 i + 2876\bigr] 2 3 0 2 i + 2 8 7 6 ]
y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( − 214 i − 402 ) x + 2302 i + 2876 {y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-214i-402\right){x}+2302i+2876 y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( − 2 1 4 i − 4 0 2 ) x + 2 3 0 2 i + 2 8 7 6
57800.4-e9
57800.4-e
10 10 1 0
16 16 1 6
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
57800.4
2 3 ⋅ 5 2 ⋅ 1 7 2 2^{3} \cdot 5^{2} \cdot 17^{2} 2 3 ⋅ 5 2 ⋅ 1 7 2
2 11 ⋅ 5 5 ⋅ 1 7 6 2^{11} \cdot 5^{5} \cdot 17^{6} 2 1 1 ⋅ 5 5 ⋅ 1 7 6
2.77109 2.77109 2 . 7 7 1 0 9
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 ) (a+1), (-a-2), (2a+1), (a+4) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
16 16 1 6
2 2 2^{2} 2 2
1 1 1
0.181713085 0.181713085 0 . 1 8 1 7 1 3 0 8 5
2.907409369
− 15332659200009 625 a + 5763174879987 625 -\frac{15332659200009}{625} a + \frac{5763174879987}{625} − 6 2 5 1 5 3 3 2 6 5 9 2 0 0 0 0 9 a + 6 2 5 5 7 6 3 1 7 4 8 7 9 9 8 7
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , 0 0 0 , − 1654 i + 14238 -1654 i + 14238 − 1 6 5 4 i + 1 4 2 3 8 , 657780 i + 114840 ] 657780 i + 114840\bigr] 6 5 7 7 8 0 i + 1 1 4 8 4 0 ]
y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( − 1654 i + 14238 ) x + 657780 i + 114840 {y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-1654i+14238\right){x}+657780i+114840 y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( − 1 6 5 4 i + 1 4 2 3 8 ) x + 6 5 7 7 8 0 i + 1 1 4 8 4 0
57800.4-e10
57800.4-e
10 10 1 0
16 16 1 6
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
57800.4
2 3 ⋅ 5 2 ⋅ 1 7 2 2^{3} \cdot 5^{2} \cdot 17^{2} 2 3 ⋅ 5 2 ⋅ 1 7 2
2 11 ⋅ 5 5 ⋅ 1 7 6 2^{11} \cdot 5^{5} \cdot 17^{6} 2 1 1 ⋅ 5 5 ⋅ 1 7 6
2.77109 2.77109 2 . 7 7 1 0 9
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 ) (a+1), (-a-2), (2a+1), (a+4) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
4 4 4
2 4 2^{4} 2 4
1 1 1
0.181713085 0.181713085 0 . 1 8 1 7 1 3 0 8 5
2.907409369
15332659200009 625 a + 5763174879987 625 \frac{15332659200009}{625} a + \frac{5763174879987}{625} 6 2 5 1 5 3 3 2 6 5 9 2 0 0 0 0 9 a + 6 2 5 5 7 6 3 1 7 4 8 7 9 9 8 7
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , 0 0 0 , 12746 i + 6558 12746 i + 6558 1 2 7 4 6 i + 6 5 5 8 , 51156 i + 652464 ] 51156 i + 652464\bigr] 5 1 1 5 6 i + 6 5 2 4 6 4 ]
y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( 12746 i + 6558 ) x + 51156 i + 652464 {y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(12746i+6558\right){x}+51156i+652464 y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( 1 2 7 4 6 i + 6 5 5 8 ) x + 5 1 1 5 6 i + 6 5 2 4 6 4
57800.4-f1
57800.4-f
1 1 1
1 1 1
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
57800.4
2 3 ⋅ 5 2 ⋅ 1 7 2 2^{3} \cdot 5^{2} \cdot 17^{2} 2 3 ⋅ 5 2 ⋅ 1 7 2
2 4 ⋅ 5 2 ⋅ 1 7 8 2^{4} \cdot 5^{2} \cdot 17^{8} 2 4 ⋅ 5 2 ⋅ 1 7 8
2.77109 2.77109 2 . 7 7 1 0 9
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 ) (a+1), (-a-2), (2a+1), (a+4) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
1 1 1
2 2 2
1 1 1
1.219868325 1.219868325 1 . 2 1 9 8 6 8 3 2 5
2.439736651
− 2048 a − 6144 5 -2048 a - \frac{6144}{5} − 2 0 4 8 a − 5 6 1 4 4
[ 0 \bigl[0 [ 0 , − i − 1 -i - 1 − i − 1 , i + 1 i + 1 i + 1 , − i + 33 -i + 33 − i + 3 3 , 75 i + 14 ] 75 i + 14\bigr] 7 5 i + 1 4 ]
y 2 + ( i + 1 ) y = x 3 + ( − i − 1 ) x 2 + ( − i + 33 ) x + 75 i + 14 {y}^2+\left(i+1\right){y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(-i+33\right){x}+75i+14 y 2 + ( i + 1 ) y = x 3 + ( − i − 1 ) x 2 + ( − i + 3 3 ) x + 7 5 i + 1 4
57800.4-g1
57800.4-g
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
57800.4
2 3 ⋅ 5 2 ⋅ 1 7 2 2^{3} \cdot 5^{2} \cdot 17^{2} 2 3 ⋅ 5 2 ⋅ 1 7 2
2 4 ⋅ 5 6 ⋅ 1 7 8 2^{4} \cdot 5^{6} \cdot 17^{8} 2 4 ⋅ 5 6 ⋅ 1 7 8
2.77109 2.77109 2 . 7 7 1 0 9
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 ) (a+1), (-a-2), (2a+1), (a+4) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2Cs
1 1 1
2 6 2^{6} 2 6
1 1 1
0.738190738 0.738190738 0 . 7 3 8 1 9 0 7 3 8
2.952762954
33574464 180625 a + 283128848 180625 \frac{33574464}{180625} a + \frac{283128848}{180625} 1 8 0 6 2 5 3 3 5 7 4 4 6 4 a + 1 8 0 6 2 5 2 8 3 1 2 8 8 4 8
[ i + 1 \bigl[i + 1 [ i + 1 , − i + 1 -i + 1 − i + 1 , 0 0 0 , 83 i + 12 83 i + 12 8 3 i + 1 2 , − 91 i + 28 ] -91 i + 28\bigr] − 9 1 i + 2 8 ]
y 2 + ( i + 1 ) x y = x 3 + ( − i + 1 ) x 2 + ( 83 i + 12 ) x − 91 i + 28 {y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(83i+12\right){x}-91i+28 y 2 + ( i + 1 ) x y = x 3 + ( − i + 1 ) x 2 + ( 8 3 i + 1 2 ) x − 9 1 i + 2 8
57800.4-g2
57800.4-g
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
57800.4
2 3 ⋅ 5 2 ⋅ 1 7 2 2^{3} \cdot 5^{2} \cdot 17^{2} 2 3 ⋅ 5 2 ⋅ 1 7 2
2 8 ⋅ 5 6 ⋅ 1 7 7 2^{8} \cdot 5^{6} \cdot 17^{7} 2 8 ⋅ 5 6 ⋅ 1 7 7
2.77109 2.77109 2 . 7 7 1 0 9
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 ) (a+1), (-a-2), (2a+1), (a+4) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 6 2^{6} 2 6
1 1 1
0.738190738 0.738190738 0 . 7 3 8 1 9 0 7 3 8
2.952762954
− 2306048 10625 a + 19982336 10625 -\frac{2306048}{10625} a + \frac{19982336}{10625} − 1 0 6 2 5 2 3 0 6 0 4 8 a + 1 0 6 2 5 1 9 9 8 2 3 3 6
[ 0 \bigl[0 [ 0 , − i + 1 -i + 1 − i + 1 , 0 0 0 , 86 i + 18 86 i + 18 8 6 i + 1 8 , 16 i − 85 ] 16 i - 85\bigr] 1 6 i − 8 5 ]
y 2 = x 3 + ( − i + 1 ) x 2 + ( 86 i + 18 ) x + 16 i − 85 {y}^2={x}^{3}+\left(-i+1\right){x}^{2}+\left(86i+18\right){x}+16i-85 y 2 = x 3 + ( − i + 1 ) x 2 + ( 8 6 i + 1 8 ) x + 1 6 i − 8 5
57800.4-g3
57800.4-g
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
57800.4
2 3 ⋅ 5 2 ⋅ 1 7 2 2^{3} \cdot 5^{2} \cdot 17^{2} 2 3 ⋅ 5 2 ⋅ 1 7 2
2 8 ⋅ 5 9 ⋅ 1 7 7 2^{8} \cdot 5^{9} \cdot 17^{7} 2 8 ⋅ 5 9 ⋅ 1 7 7
2.77109 2.77109 2 . 7 7 1 0 9
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 ) (a+1), (-a-2), (2a+1), (a+4) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 7 2^{7} 2 7
1 1 1
0.369095369 0.369095369 0 . 3 6 9 0 9 5 3 6 9
2.952762954
− 932738084712 6640625 a + 486943284916 6640625 -\frac{932738084712}{6640625} a + \frac{486943284916}{6640625} − 6 6 4 0 6 2 5 9 3 2 7 3 8 0 8 4 7 1 2 a + 6 6 4 0 6 2 5 4 8 6 9 4 3 2 8 4 9 1 6
[ i + 1 \bigl[i + 1 [ i + 1 , − i + 1 -i + 1 − i + 1 , 0 0 0 , 813 i + 297 813 i + 297 8 1 3 i + 2 9 7 , 2696 i + 9697 ] 2696 i + 9697\bigr] 2 6 9 6 i + 9 6 9 7 ]
y 2 + ( i + 1 ) x y = x 3 + ( − i + 1 ) x 2 + ( 813 i + 297 ) x + 2696 i + 9697 {y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(813i+297\right){x}+2696i+9697 y 2 + ( i + 1 ) x y = x 3 + ( − i + 1 ) x 2 + ( 8 1 3 i + 2 9 7 ) x + 2 6 9 6 i + 9 6 9 7
57800.4-g4
57800.4-g
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
57800.4
2 3 ⋅ 5 2 ⋅ 1 7 2 2^{3} \cdot 5^{2} \cdot 17^{2} 2 3 ⋅ 5 2 ⋅ 1 7 2
2 8 ⋅ 5 3 ⋅ 1 7 10 2^{8} \cdot 5^{3} \cdot 17^{10} 2 8 ⋅ 5 3 ⋅ 1 7 1 0
2.77109 2.77109 2 . 7 7 1 0 9
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 ) (a+1), (-a-2), (2a+1), (a+4) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 5 2^{5} 2 5
1 1 1
0.369095369 0.369095369 0 . 3 6 9 0 9 5 3 6 9
2.952762954
932967242152 2088025 a + 369264775804 2088025 \frac{932967242152}{2088025} a + \frac{369264775804}{2088025} 2 0 8 8 0 2 5 9 3 2 9 6 7 2 4 2 1 5 2 a + 2 0 8 8 0 2 5 3 6 9 2 6 4 7 7 5 8 0 4
[ i + 1 \bigl[i + 1 [ i + 1 , − i + 1 -i + 1 − i + 1 , 0 0 0 , 1033 i − 13 1033 i - 13 1 0 3 3 i − 1 3 , − 8876 i − 8677 ] -8876 i - 8677\bigr] − 8 8 7 6 i − 8 6 7 7 ]
y 2 + ( i + 1 ) x y = x 3 + ( − i + 1 ) x 2 + ( 1033 i − 13 ) x − 8876 i − 8677 {y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(1033i-13\right){x}-8876i-8677 y 2 + ( i + 1 ) x y = x 3 + ( − i + 1 ) x 2 + ( 1 0 3 3 i − 1 3 ) x − 8 8 7 6 i − 8 6 7 7