Learn more

Refine search


Results (26 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
57800.4-a1 57800.4-a Q(1)\Q(\sqrt{-1}) 2352172 2^{3} \cdot 5^{2} \cdot 17^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.1379961572.137996157 2.137996157 71702125a+470336125 -\frac{71702}{125} a + \frac{470336}{125} [i+1 \bigl[i + 1 , i1 i - 1 , i+1 i + 1 , 8i+7 8 i + 7 , 3i+5] -3 i + 5\bigr] y2+(i+1)xy+(i+1)y=x3+(i1)x2+(8i+7)x3i+5{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(i-1\right){x}^{2}+\left(8i+7\right){x}-3i+5
57800.4-a2 57800.4-a Q(1)\Q(\sqrt{-1}) 2352172 2^{3} \cdot 5^{2} \cdot 17^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.0689980781.068998078 2.137996157 7093013115625a+29988946715625 \frac{70930131}{15625} a + \frac{299889467}{15625} [i+1 \bigl[i + 1 , i1 i - 1 , i+1 i + 1 , 58i+37 58 i + 37 , 7i261] 7 i - 261\bigr] y2+(i+1)xy+(i+1)y=x3+(i1)x2+(58i+37)x+7i261{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(i-1\right){x}^{2}+\left(58i+37\right){x}+7i-261
57800.4-b1 57800.4-b Q(1)\Q(\sqrt{-1}) 2352172 2^{3} \cdot 5^{2} \cdot 17^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.5185402340.518540234 1.555620703 71702125a+470336125 -\frac{71702}{125} a + \frac{470336}{125} [i+1 \bigl[i + 1 , i1 -i - 1 , i+1 i + 1 , 210i31 -210 i - 31 , 849i449] 849 i - 449\bigr] y2+(i+1)xy+(i+1)y=x3+(i1)x2+(210i31)x+849i449{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(-210i-31\right){x}+849i-449
57800.4-b2 57800.4-b Q(1)\Q(\sqrt{-1}) 2352172 2^{3} \cdot 5^{2} \cdot 17^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.2592701170.259270117 1.555620703 7093013115625a+29988946715625 \frac{70930131}{15625} a + \frac{299889467}{15625} [i+1 \bigl[i + 1 , i1 -i - 1 , i+1 i + 1 , 1200i81 -1200 i - 81 , 11373i+9653] -11373 i + 9653\bigr] y2+(i+1)xy+(i+1)y=x3+(i1)x2+(1200i81)x11373i+9653{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(-1200i-81\right){x}-11373i+9653
57800.4-c1 57800.4-c Q(1)\Q(\sqrt{-1}) 2352172 2^{3} \cdot 5^{2} \cdot 17^{2} 11 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 2.3036069292.303606929 0.2170241740.217024174 3.999507146 2226135040016425a4178441913604425 -\frac{2226135040016}{425} a - \frac{4178441913604}{425} [i+1 \bigl[i + 1 , i+1 i + 1 , 0 0 , 6933i+6265 -6933 i + 6265 , 109144i+335983] 109144 i + 335983\bigr] y2+(i+1)xy=x3+(i+1)x2+(6933i+6265)x+109144i+335983{y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(i+1\right){x}^{2}+\left(-6933i+6265\right){x}+109144i+335983
57800.4-c2 57800.4-c Q(1)\Q(\sqrt{-1}) 2352172 2^{3} \cdot 5^{2} \cdot 17^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 1.1518034641.151803464 0.4340483490.434048349 3.999507146 18495673728180625a89707236836125 \frac{18495673728}{180625} a - \frac{897072368}{36125} [i+1 \bigl[i + 1 , i+1 i + 1 , 0 0 , 433i+390 -433 i + 390 , 1769i+5508] 1769 i + 5508\bigr] y2+(i+1)xy=x3+(i+1)x2+(433i+390)x+1769i+5508{y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(i+1\right){x}^{2}+\left(-433i+390\right){x}+1769i+5508
57800.4-c3 57800.4-c Q(1)\Q(\sqrt{-1}) 2352172 2^{3} \cdot 5^{2} \cdot 17^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 4.6072138584.607213858 0.1085120870.108512087 3.999507146 6244677450258964764359848400625a745004910675193824359848400625 -\frac{624467745025896476}{4359848400625} a - \frac{74500491067519382}{4359848400625} [i+1 \bigl[i + 1 , i+1 i + 1 , 0 0 , 5887i+7905 5887 i + 7905 , 212070i+307155] -212070 i + 307155\bigr] y2+(i+1)xy=x3+(i+1)x2+(5887i+7905)x212070i+307155{y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(i+1\right){x}^{2}+\left(5887i+7905\right){x}-212070i+307155
57800.4-c4 57800.4-c Q(1)\Q(\sqrt{-1}) 2352172 2^{3} \cdot 5^{2} \cdot 17^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 2.3036069292.303606929 0.2170241740.217024174 3.999507146 114227833742432625390625a+466968294366832625390625 \frac{1142278337424}{32625390625} a + \frac{4669682943668}{32625390625} [i+1 \bigl[i + 1 , i+1 i + 1 , 0 0 , 13i+455 -13 i + 455 , 1940i+12245] -1940 i + 12245\bigr] y2+(i+1)xy=x3+(i+1)x2+(13i+455)x1940i+12245{y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(i+1\right){x}^{2}+\left(-13i+455\right){x}-1940i+12245
57800.4-c5 57800.4-c Q(1)\Q(\sqrt{-1}) 2352172 2^{3} \cdot 5^{2} \cdot 17^{2} 11 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 0.5759017320.575901732 0.4340483490.434048349 3.999507146 28451553286640625a+82541096966640625 -\frac{2845155328}{6640625} a + \frac{8254109696}{6640625} [0 \bigl[0 , i -i , 0 0 , 216i77 216 i - 77 , 261i+979] 261 i + 979\bigr] y2=x3ix2+(216i77)x+261i+979{y}^2={x}^{3}-i{x}^{2}+\left(216i-77\right){x}+261i+979
57800.4-c6 57800.4-c Q(1)\Q(\sqrt{-1}) 2352172 2^{3} \cdot 5^{2} \cdot 17^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 4.6072138584.607213858 0.1085120870.108512087 3.999507146 5476502310236304444097900390625a+44992379285432474244097900390625 -\frac{54765023102363044}{44097900390625} a + \frac{449923792854324742}{44097900390625} [i+1 \bigl[i + 1 , i+1 i + 1 , 0 0 , 807i5955 807 i - 5955 , 37466i+157543] -37466 i + 157543\bigr] y2+(i+1)xy=x3+(i+1)x2+(807i5955)x37466i+157543{y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(i+1\right){x}^{2}+\left(807i-5955\right){x}-37466i+157543
57800.4-d1 57800.4-d Q(1)\Q(\sqrt{-1}) 2352172 2^{3} \cdot 5^{2} \cdot 17^{2} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.2074563780.207456378 5.0296459565.029645956 4.173728546 2048a61445 -2048 a - \frac{6144}{5} [0 \bigl[0 , i -i , i+1 i + 1 , i2 i - 2 , i+1] -i + 1\bigr] y2+(i+1)y=x3ix2+(i2)xi+1{y}^2+\left(i+1\right){y}={x}^{3}-i{x}^{2}+\left(i-2\right){x}-i+1
57800.4-e1 57800.4-e Q(1)\Q(\sqrt{-1}) 2352172 2^{3} \cdot 5^{2} \cdot 17^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.3634261710.363426171 2.907409369 35999730234390625a51700389912390625 -\frac{35999730234}{390625} a - \frac{51700389912}{390625} [i+1 \bigl[i + 1 , i i , 0 0 , 796i+408 796 i + 408 , 936i+9924] 936 i + 9924\bigr] y2+(i+1)xy=x3+ix2+(796i+408)x+936i+9924{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(796i+408\right){x}+936i+9924
57800.4-e2 57800.4-e Q(1)\Q(\sqrt{-1}) 2352172 2^{3} \cdot 5^{2} \cdot 17^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.3634261710.363426171 2.907409369 35999730234390625a51700389912390625 \frac{35999730234}{390625} a - \frac{51700389912}{390625} [i+1 \bigl[i + 1 , i i , 0 0 , 104i+888 -104 i + 888 , 10640i+1820] 10640 i + 1820\bigr] y2+(i+1)xy=x3+ix2+(104i+888)x+10640i+1820{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-104i+888\right){x}+10640i+1820
57800.4-e3 57800.4-e Q(1)\Q(\sqrt{-1}) 2352172 2^{3} \cdot 5^{2} \cdot 17^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.7268523420.726852342 2.907409369 237276625 \frac{237276}{625} [i+1 \bigl[i + 1 , i i , 0 0 , 26i+48 26 i + 48 , 224i+208] 224 i + 208\bigr] y2+(i+1)xy=x3+ix2+(26i+48)x+224i+208{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(26i+48\right){x}+224i+208
57800.4-e4 57800.4-e Q(1)\Q(\sqrt{-1}) 2352172 2^{3} \cdot 5^{2} \cdot 17^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.1817130850.181713085 2.907409369 22845545233191152587890625a+135893651813613152587890625 -\frac{22845545233191}{152587890625} a + \frac{135893651813613}{152587890625} [i+1 \bigl[i + 1 , i i , 0 0 , 634i+978 -634 i + 978 , 9964i11152] 9964 i - 11152\bigr] y2+(i+1)xy=x3+ix2+(634i+978)x+9964i11152{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-634i+978\right){x}+9964i-11152
57800.4-e5 57800.4-e Q(1)\Q(\sqrt{-1}) 2352172 2^{3} \cdot 5^{2} \cdot 17^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.1817130850.181713085 2.907409369 22845545233191152587890625a+135893651813613152587890625 \frac{22845545233191}{152587890625} a + \frac{135893651813613}{152587890625} [i+1 \bigl[i + 1 , i i , 0 0 , 1166i+18 1166 i + 18 , 12356i+7688] -12356 i + 7688\bigr] y2+(i+1)xy=x3+ix2+(1166i+18)x12356i+7688{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(1166i+18\right){x}-12356i+7688
57800.4-e6 57800.4-e Q(1)\Q(\sqrt{-1}) 2352172 2^{3} \cdot 5^{2} \cdot 17^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.4537046841.453704684 2.907409369 14817625 \frac{148176}{25} [i+1 \bigl[i + 1 , i i , 0 0 , 14i27 -14 i - 27 , 22i+46] 22 i + 46\bigr] y2+(i+1)xy=x3+ix2+(14i27)x+22i+46{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-14i-27\right){x}+22i+46
57800.4-e7 57800.4-e Q(1)\Q(\sqrt{-1}) 2352172 2^{3} \cdot 5^{2} \cdot 17^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.4537046841.453704684 2.907409369 552965 \frac{55296}{5} [0 \bigl[0 , 0 0 , 0 0 , 16i+30 16 i + 30 , 52i47] 52 i - 47\bigr] y2=x3+(16i+30)x+52i47{y}^2={x}^{3}+\left(16i+30\right){x}+52i-47
57800.4-e8 57800.4-e Q(1)\Q(\sqrt{-1}) 2352172 2^{3} \cdot 5^{2} \cdot 17^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.7268523420.726852342 2.907409369 1323046445 \frac{132304644}{5} [i+1 \bigl[i + 1 , i i , 0 0 , 214i402 -214 i - 402 , 2302i+2876] 2302 i + 2876\bigr] y2+(i+1)xy=x3+ix2+(214i402)x+2302i+2876{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-214i-402\right){x}+2302i+2876
57800.4-e9 57800.4-e Q(1)\Q(\sqrt{-1}) 2352172 2^{3} \cdot 5^{2} \cdot 17^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.1817130850.181713085 2.907409369 15332659200009625a+5763174879987625 -\frac{15332659200009}{625} a + \frac{5763174879987}{625} [i+1 \bigl[i + 1 , i i , 0 0 , 1654i+14238 -1654 i + 14238 , 657780i+114840] 657780 i + 114840\bigr] y2+(i+1)xy=x3+ix2+(1654i+14238)x+657780i+114840{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-1654i+14238\right){x}+657780i+114840
57800.4-e10 57800.4-e Q(1)\Q(\sqrt{-1}) 2352172 2^{3} \cdot 5^{2} \cdot 17^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.1817130850.181713085 2.907409369 15332659200009625a+5763174879987625 \frac{15332659200009}{625} a + \frac{5763174879987}{625} [i+1 \bigl[i + 1 , i i , 0 0 , 12746i+6558 12746 i + 6558 , 51156i+652464] 51156 i + 652464\bigr] y2+(i+1)xy=x3+ix2+(12746i+6558)x+51156i+652464{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(12746i+6558\right){x}+51156i+652464
57800.4-f1 57800.4-f Q(1)\Q(\sqrt{-1}) 2352172 2^{3} \cdot 5^{2} \cdot 17^{2} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 1.2198683251.219868325 2.439736651 2048a61445 -2048 a - \frac{6144}{5} [0 \bigl[0 , i1 -i - 1 , i+1 i + 1 , i+33 -i + 33 , 75i+14] 75 i + 14\bigr] y2+(i+1)y=x3+(i1)x2+(i+33)x+75i+14{y}^2+\left(i+1\right){y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(-i+33\right){x}+75i+14
57800.4-g1 57800.4-g Q(1)\Q(\sqrt{-1}) 2352172 2^{3} \cdot 5^{2} \cdot 17^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.7381907380.738190738 2.952762954 33574464180625a+283128848180625 \frac{33574464}{180625} a + \frac{283128848}{180625} [i+1 \bigl[i + 1 , i+1 -i + 1 , 0 0 , 83i+12 83 i + 12 , 91i+28] -91 i + 28\bigr] y2+(i+1)xy=x3+(i+1)x2+(83i+12)x91i+28{y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(83i+12\right){x}-91i+28
57800.4-g2 57800.4-g Q(1)\Q(\sqrt{-1}) 2352172 2^{3} \cdot 5^{2} \cdot 17^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 0.7381907380.738190738 2.952762954 230604810625a+1998233610625 -\frac{2306048}{10625} a + \frac{19982336}{10625} [0 \bigl[0 , i+1 -i + 1 , 0 0 , 86i+18 86 i + 18 , 16i85] 16 i - 85\bigr] y2=x3+(i+1)x2+(86i+18)x+16i85{y}^2={x}^{3}+\left(-i+1\right){x}^{2}+\left(86i+18\right){x}+16i-85
57800.4-g3 57800.4-g Q(1)\Q(\sqrt{-1}) 2352172 2^{3} \cdot 5^{2} \cdot 17^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 0.3690953690.369095369 2.952762954 9327380847126640625a+4869432849166640625 -\frac{932738084712}{6640625} a + \frac{486943284916}{6640625} [i+1 \bigl[i + 1 , i+1 -i + 1 , 0 0 , 813i+297 813 i + 297 , 2696i+9697] 2696 i + 9697\bigr] y2+(i+1)xy=x3+(i+1)x2+(813i+297)x+2696i+9697{y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(813i+297\right){x}+2696i+9697
57800.4-g4 57800.4-g Q(1)\Q(\sqrt{-1}) 2352172 2^{3} \cdot 5^{2} \cdot 17^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.3690953690.369095369 2.952762954 9329672421522088025a+3692647758042088025 \frac{932967242152}{2088025} a + \frac{369264775804}{2088025} [i+1 \bigl[i + 1 , i+1 -i + 1 , 0 0 , 1033i13 1033 i - 13 , 8876i8677] -8876 i - 8677\bigr] y2+(i+1)xy=x3+(i+1)x2+(1033i13)x8876i8677{y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(1033i-13\right){x}-8876i-8677
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.