Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
57800.4-a1 |
57800.4-a |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57800.4 |
\( 2^{3} \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{10} \cdot 5^{4} \cdot 17^{3} \) |
$2.77109$ |
$(a+1), (-a-2), (2a+1), (a+4)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$2.137996157$ |
2.137996157 |
\( -\frac{71702}{125} a + \frac{470336}{125} \) |
\( \bigl[i + 1\) , \( i - 1\) , \( i + 1\) , \( 8 i + 7\) , \( -3 i + 5\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(i-1\right){x}^{2}+\left(8i+7\right){x}-3i+5$ |
57800.4-a2 |
57800.4-a |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57800.4 |
\( 2^{3} \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{11} \cdot 5^{8} \cdot 17^{3} \) |
$2.77109$ |
$(a+1), (-a-2), (2a+1), (a+4)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$1.068998078$ |
2.137996157 |
\( \frac{70930131}{15625} a + \frac{299889467}{15625} \) |
\( \bigl[i + 1\) , \( i - 1\) , \( i + 1\) , \( 58 i + 37\) , \( 7 i - 261\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(i-1\right){x}^{2}+\left(58i+37\right){x}+7i-261$ |
57800.4-b1 |
57800.4-b |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57800.4 |
\( 2^{3} \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{10} \cdot 5^{4} \cdot 17^{9} \) |
$2.77109$ |
$(a+1), (-a-2), (2a+1), (a+4)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \cdot 3 \) |
$1$ |
$0.518540234$ |
1.555620703 |
\( -\frac{71702}{125} a + \frac{470336}{125} \) |
\( \bigl[i + 1\) , \( -i - 1\) , \( i + 1\) , \( -210 i - 31\) , \( 849 i - 449\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(-210i-31\right){x}+849i-449$ |
57800.4-b2 |
57800.4-b |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57800.4 |
\( 2^{3} \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{11} \cdot 5^{8} \cdot 17^{9} \) |
$2.77109$ |
$(a+1), (-a-2), (2a+1), (a+4)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \cdot 3 \) |
$1$ |
$0.259270117$ |
1.555620703 |
\( \frac{70930131}{15625} a + \frac{299889467}{15625} \) |
\( \bigl[i + 1\) , \( -i - 1\) , \( i + 1\) , \( -1200 i - 81\) , \( -11373 i + 9653\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(-1200i-81\right){x}-11373i+9653$ |
57800.4-c1 |
57800.4-c |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57800.4 |
\( 2^{3} \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{8} \cdot 5^{4} \cdot 17^{7} \) |
$2.77109$ |
$(a+1), (-a-2), (2a+1), (a+4)$ |
$1$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{6} \) |
$2.303606929$ |
$0.217024174$ |
3.999507146 |
\( -\frac{2226135040016}{425} a - \frac{4178441913604}{425} \) |
\( \bigl[i + 1\) , \( i + 1\) , \( 0\) , \( -6933 i + 6265\) , \( 109144 i + 335983\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(i+1\right){x}^{2}+\left(-6933i+6265\right){x}+109144i+335983$ |
57800.4-c2 |
57800.4-c |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57800.4 |
\( 2^{3} \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{4} \cdot 5^{8} \cdot 17^{8} \) |
$2.77109$ |
$(a+1), (-a-2), (2a+1), (a+4)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$1.151803464$ |
$0.434048349$ |
3.999507146 |
\( \frac{18495673728}{180625} a - \frac{897072368}{36125} \) |
\( \bigl[i + 1\) , \( i + 1\) , \( 0\) , \( -433 i + 390\) , \( 1769 i + 5508\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(i+1\right){x}^{2}+\left(-433i+390\right){x}+1769i+5508$ |
57800.4-c3 |
57800.4-c |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57800.4 |
\( 2^{3} \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{10} \cdot 5^{5} \cdot 17^{14} \) |
$2.77109$ |
$(a+1), (-a-2), (2a+1), (a+4)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$4.607213858$ |
$0.108512087$ |
3.999507146 |
\( -\frac{624467745025896476}{4359848400625} a - \frac{74500491067519382}{4359848400625} \) |
\( \bigl[i + 1\) , \( i + 1\) , \( 0\) , \( 5887 i + 7905\) , \( -212070 i + 307155\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(i+1\right){x}^{2}+\left(5887i+7905\right){x}-212070i+307155$ |
57800.4-c4 |
57800.4-c |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57800.4 |
\( 2^{3} \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{8} \cdot 5^{10} \cdot 17^{10} \) |
$2.77109$ |
$(a+1), (-a-2), (2a+1), (a+4)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$2.303606929$ |
$0.217024174$ |
3.999507146 |
\( \frac{1142278337424}{32625390625} a + \frac{4669682943668}{32625390625} \) |
\( \bigl[i + 1\) , \( i + 1\) , \( 0\) , \( -13 i + 455\) , \( -1940 i + 12245\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(i+1\right){x}^{2}+\left(-13i+455\right){x}-1940i+12245$ |
57800.4-c5 |
57800.4-c |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57800.4 |
\( 2^{3} \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{8} \cdot 5^{10} \cdot 17^{7} \) |
$2.77109$ |
$(a+1), (-a-2), (2a+1), (a+4)$ |
$1$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{7} \) |
$0.575901732$ |
$0.434048349$ |
3.999507146 |
\( -\frac{2845155328}{6640625} a + \frac{8254109696}{6640625} \) |
\( \bigl[0\) , \( -i\) , \( 0\) , \( 216 i - 77\) , \( 261 i + 979\bigr] \) |
${y}^2={x}^{3}-i{x}^{2}+\left(216i-77\right){x}+261i+979$ |
57800.4-c6 |
57800.4-c |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57800.4 |
\( 2^{3} \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{10} \cdot 5^{17} \cdot 17^{8} \) |
$2.77109$ |
$(a+1), (-a-2), (2a+1), (a+4)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$4.607213858$ |
$0.108512087$ |
3.999507146 |
\( -\frac{54765023102363044}{44097900390625} a + \frac{449923792854324742}{44097900390625} \) |
\( \bigl[i + 1\) , \( i + 1\) , \( 0\) , \( 807 i - 5955\) , \( -37466 i + 157543\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(i+1\right){x}^{2}+\left(807i-5955\right){x}-37466i+157543$ |
57800.4-d1 |
57800.4-d |
$1$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57800.4 |
\( 2^{3} \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{4} \cdot 5^{2} \cdot 17^{2} \) |
$2.77109$ |
$(a+1), (-a-2), (2a+1), (a+4)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2 \) |
$0.207456378$ |
$5.029645956$ |
4.173728546 |
\( -2048 a - \frac{6144}{5} \) |
\( \bigl[0\) , \( -i\) , \( i + 1\) , \( i - 2\) , \( -i + 1\bigr] \) |
${y}^2+\left(i+1\right){y}={x}^{3}-i{x}^{2}+\left(i-2\right){x}-i+1$ |
57800.4-e1 |
57800.4-e |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57800.4 |
\( 2^{3} \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{10} \cdot 5^{10} \cdot 17^{6} \) |
$2.77109$ |
$(a+1), (-a-2), (2a+1), (a+4)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{7} \) |
$1$ |
$0.363426171$ |
2.907409369 |
\( -\frac{35999730234}{390625} a - \frac{51700389912}{390625} \) |
\( \bigl[i + 1\) , \( i\) , \( 0\) , \( 796 i + 408\) , \( 936 i + 9924\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(796i+408\right){x}+936i+9924$ |
57800.4-e2 |
57800.4-e |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57800.4 |
\( 2^{3} \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{10} \cdot 5^{10} \cdot 17^{6} \) |
$2.77109$ |
$(a+1), (-a-2), (2a+1), (a+4)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$4$ |
\( 2^{5} \) |
$1$ |
$0.363426171$ |
2.907409369 |
\( \frac{35999730234}{390625} a - \frac{51700389912}{390625} \) |
\( \bigl[i + 1\) , \( i\) , \( 0\) , \( -104 i + 888\) , \( 10640 i + 1820\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-104i+888\right){x}+10640i+1820$ |
57800.4-e3 |
57800.4-e |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57800.4 |
\( 2^{3} \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{8} \cdot 5^{8} \cdot 17^{6} \) |
$2.77109$ |
$(a+1), (-a-2), (2a+1), (a+4)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$1$ |
$0.726852342$ |
2.907409369 |
\( \frac{237276}{625} \) |
\( \bigl[i + 1\) , \( i\) , \( 0\) , \( 26 i + 48\) , \( 224 i + 208\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(26i+48\right){x}+224i+208$ |
57800.4-e4 |
57800.4-e |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57800.4 |
\( 2^{3} \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{11} \cdot 5^{17} \cdot 17^{6} \) |
$2.77109$ |
$(a+1), (-a-2), (2a+1), (a+4)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$16$ |
\( 2^{2} \) |
$1$ |
$0.181713085$ |
2.907409369 |
\( -\frac{22845545233191}{152587890625} a + \frac{135893651813613}{152587890625} \) |
\( \bigl[i + 1\) , \( i\) , \( 0\) , \( -634 i + 978\) , \( 9964 i - 11152\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-634i+978\right){x}+9964i-11152$ |
57800.4-e5 |
57800.4-e |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57800.4 |
\( 2^{3} \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{11} \cdot 5^{17} \cdot 17^{6} \) |
$2.77109$ |
$(a+1), (-a-2), (2a+1), (a+4)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{6} \) |
$1$ |
$0.181713085$ |
2.907409369 |
\( \frac{22845545233191}{152587890625} a + \frac{135893651813613}{152587890625} \) |
\( \bigl[i + 1\) , \( i\) , \( 0\) , \( 1166 i + 18\) , \( -12356 i + 7688\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(1166i+18\right){x}-12356i+7688$ |
57800.4-e6 |
57800.4-e |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57800.4 |
\( 2^{3} \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{4} \cdot 5^{4} \cdot 17^{6} \) |
$2.77109$ |
$(a+1), (-a-2), (2a+1), (a+4)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$1$ |
$1.453704684$ |
2.907409369 |
\( \frac{148176}{25} \) |
\( \bigl[i + 1\) , \( i\) , \( 0\) , \( -14 i - 27\) , \( 22 i + 46\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-14i-27\right){x}+22i+46$ |
57800.4-e7 |
57800.4-e |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57800.4 |
\( 2^{3} \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{8} \cdot 5^{2} \cdot 17^{6} \) |
$2.77109$ |
$(a+1), (-a-2), (2a+1), (a+4)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$1.453704684$ |
2.907409369 |
\( \frac{55296}{5} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 16 i + 30\) , \( 52 i - 47\bigr] \) |
${y}^2={x}^{3}+\left(16i+30\right){x}+52i-47$ |
57800.4-e8 |
57800.4-e |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57800.4 |
\( 2^{3} \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{8} \cdot 5^{2} \cdot 17^{6} \) |
$2.77109$ |
$(a+1), (-a-2), (2a+1), (a+4)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$4$ |
\( 2^{2} \) |
$1$ |
$0.726852342$ |
2.907409369 |
\( \frac{132304644}{5} \) |
\( \bigl[i + 1\) , \( i\) , \( 0\) , \( -214 i - 402\) , \( 2302 i + 2876\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-214i-402\right){x}+2302i+2876$ |
57800.4-e9 |
57800.4-e |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57800.4 |
\( 2^{3} \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{11} \cdot 5^{5} \cdot 17^{6} \) |
$2.77109$ |
$(a+1), (-a-2), (2a+1), (a+4)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$16$ |
\( 2^{2} \) |
$1$ |
$0.181713085$ |
2.907409369 |
\( -\frac{15332659200009}{625} a + \frac{5763174879987}{625} \) |
\( \bigl[i + 1\) , \( i\) , \( 0\) , \( -1654 i + 14238\) , \( 657780 i + 114840\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-1654i+14238\right){x}+657780i+114840$ |
57800.4-e10 |
57800.4-e |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57800.4 |
\( 2^{3} \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{11} \cdot 5^{5} \cdot 17^{6} \) |
$2.77109$ |
$(a+1), (-a-2), (2a+1), (a+4)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$4$ |
\( 2^{4} \) |
$1$ |
$0.181713085$ |
2.907409369 |
\( \frac{15332659200009}{625} a + \frac{5763174879987}{625} \) |
\( \bigl[i + 1\) , \( i\) , \( 0\) , \( 12746 i + 6558\) , \( 51156 i + 652464\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(12746i+6558\right){x}+51156i+652464$ |
57800.4-f1 |
57800.4-f |
$1$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57800.4 |
\( 2^{3} \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{4} \cdot 5^{2} \cdot 17^{8} \) |
$2.77109$ |
$(a+1), (-a-2), (2a+1), (a+4)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2 \) |
$1$ |
$1.219868325$ |
2.439736651 |
\( -2048 a - \frac{6144}{5} \) |
\( \bigl[0\) , \( -i - 1\) , \( i + 1\) , \( -i + 33\) , \( 75 i + 14\bigr] \) |
${y}^2+\left(i+1\right){y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(-i+33\right){x}+75i+14$ |
57800.4-g1 |
57800.4-g |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57800.4 |
\( 2^{3} \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{4} \cdot 5^{6} \cdot 17^{8} \) |
$2.77109$ |
$(a+1), (-a-2), (2a+1), (a+4)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$1$ |
$0.738190738$ |
2.952762954 |
\( \frac{33574464}{180625} a + \frac{283128848}{180625} \) |
\( \bigl[i + 1\) , \( -i + 1\) , \( 0\) , \( 83 i + 12\) , \( -91 i + 28\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(83i+12\right){x}-91i+28$ |
57800.4-g2 |
57800.4-g |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57800.4 |
\( 2^{3} \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{8} \cdot 5^{6} \cdot 17^{7} \) |
$2.77109$ |
$(a+1), (-a-2), (2a+1), (a+4)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{6} \) |
$1$ |
$0.738190738$ |
2.952762954 |
\( -\frac{2306048}{10625} a + \frac{19982336}{10625} \) |
\( \bigl[0\) , \( -i + 1\) , \( 0\) , \( 86 i + 18\) , \( 16 i - 85\bigr] \) |
${y}^2={x}^{3}+\left(-i+1\right){x}^{2}+\left(86i+18\right){x}+16i-85$ |
57800.4-g3 |
57800.4-g |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57800.4 |
\( 2^{3} \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{8} \cdot 5^{9} \cdot 17^{7} \) |
$2.77109$ |
$(a+1), (-a-2), (2a+1), (a+4)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{7} \) |
$1$ |
$0.369095369$ |
2.952762954 |
\( -\frac{932738084712}{6640625} a + \frac{486943284916}{6640625} \) |
\( \bigl[i + 1\) , \( -i + 1\) , \( 0\) , \( 813 i + 297\) , \( 2696 i + 9697\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(813i+297\right){x}+2696i+9697$ |
57800.4-g4 |
57800.4-g |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57800.4 |
\( 2^{3} \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{8} \cdot 5^{3} \cdot 17^{10} \) |
$2.77109$ |
$(a+1), (-a-2), (2a+1), (a+4)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$1$ |
$0.369095369$ |
2.952762954 |
\( \frac{932967242152}{2088025} a + \frac{369264775804}{2088025} \) |
\( \bigl[i + 1\) , \( -i + 1\) , \( 0\) , \( 1033 i - 13\) , \( -8876 i - 8677\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(1033i-13\right){x}-8876i-8677$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.