Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
57600.2-a1 |
57600.2-a |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{22} \cdot 3^{2} \cdot 5^{16} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$2$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.871666361$ |
$0.382893755$ |
5.340089699 |
\( -\frac{27995042}{1171875} \) |
\( \bigl[0\) , \( -i\) , \( 0\) , \( 80\) , \( -2400 i\bigr] \) |
${y}^2={x}^{3}-i{x}^{2}+80{x}-2400i$ |
57600.2-a2 |
57600.2-a |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{20} \cdot 3^{16} \cdot 5^{2} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$2$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$0.217916590$ |
$0.765787510$ |
5.340089699 |
\( \frac{54607676}{32805} \) |
\( \bigl[0\) , \( -i\) , \( 0\) , \( -80\) , \( 80 i\bigr] \) |
${y}^2={x}^{3}-i{x}^{2}-80{x}+80i$ |
57600.2-a3 |
57600.2-a |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{16} \cdot 3^{8} \cdot 5^{4} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$2$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$0.217916590$ |
$1.531575020$ |
5.340089699 |
\( \frac{3631696}{2025} \) |
\( \bigl[0\) , \( -i\) , \( 0\) , \( 20\) , \( 0\bigr] \) |
${y}^2={x}^{3}-i{x}^{2}+20{x}$ |
57600.2-a4 |
57600.2-a |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{20} \cdot 3^{4} \cdot 5^{8} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$2$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$0.871666361$ |
$0.765787510$ |
5.340089699 |
\( \frac{868327204}{5625} \) |
\( \bigl[0\) , \( -i\) , \( 0\) , \( 200\) , \( -1152 i\bigr] \) |
${y}^2={x}^{3}-i{x}^{2}+200{x}-1152i$ |
57600.2-a5 |
57600.2-a |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$2$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$0.871666361$ |
$3.063150040$ |
5.340089699 |
\( \frac{24918016}{45} \) |
\( \bigl[0\) , \( -i\) , \( 0\) , \( 15\) , \( 18 i\bigr] \) |
${y}^2={x}^{3}-i{x}^{2}+15{x}+18i$ |
57600.2-a6 |
57600.2-a |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{22} \cdot 3^{2} \cdot 5^{4} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$2$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.871666361$ |
$0.382893755$ |
5.340089699 |
\( \frac{1770025017602}{75} \) |
\( \bigl[0\) , \( -i\) , \( 0\) , \( 3200\) , \( -70752 i\bigr] \) |
${y}^2={x}^{3}-i{x}^{2}+3200{x}-70752i$ |
57600.2-b1 |
57600.2-b |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{2} \cdot 5^{3} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1.758262373$ |
$2.078613312$ |
3.654747576 |
\( \frac{283391872}{75} a - \frac{203846336}{75} \) |
\( \bigl[0\) , \( i\) , \( 0\) , \( 40 i + 20\) , \( 16 i + 102\bigr] \) |
${y}^2={x}^{3}+i{x}^{2}+\left(40i+20\right){x}+16i+102$ |
57600.2-b2 |
57600.2-b |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{21} \cdot 3^{4} \cdot 5^{9} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.879131186$ |
$0.519653328$ |
3.654747576 |
\( -\frac{558896178746}{3515625} a - \frac{1584549852326}{1171875} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( 200 i + 574\) , \( 4986 i - 2972\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+\left(200i+574\right){x}+4986i-2972$ |
57600.2-b3 |
57600.2-b |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{21} \cdot 3^{16} \cdot 5^{3} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{6} \) |
$0.219782796$ |
$0.519653328$ |
3.654747576 |
\( \frac{1807321118}{54675} a - \frac{4618181918}{164025} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( 320 i + 134\) , \( 410 i + 2420\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+\left(320i+134\right){x}+410i+2420$ |
57600.2-b4 |
57600.2-b |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{18} \cdot 3^{8} \cdot 5^{6} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$0.439565593$ |
$1.039306656$ |
3.654747576 |
\( -\frac{16797928}{16875} a + \frac{40820288}{50625} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( 20 i + 34\) , \( 90 i - 20\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+\left(20i+34\right){x}+90i-20$ |
57600.2-b5 |
57600.2-b |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{4} \cdot 5^{6} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$0.879131186$ |
$2.078613312$ |
3.654747576 |
\( \frac{10322816}{5625} a + \frac{3312704}{1875} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -10 i - 6\) , \( 16 i - 2\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+\left(-10i-6\right){x}+16i-2$ |
57600.2-b6 |
57600.2-b |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{18} \cdot 3^{2} \cdot 5^{9} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1.758262373$ |
$1.039306656$ |
3.654747576 |
\( -\frac{27696914008}{1171875} a + \frac{4499410544}{1171875} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -40 i - 66\) , \( -170 i - 164\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+\left(-40i-66\right){x}-170i-164$ |
57600.2-c1 |
57600.2-c |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{19} \cdot 3^{2} \cdot 5^{2} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$4$ |
\( 2 \) |
$0.814722094$ |
$1.120929884$ |
3.652985375 |
\( -\frac{1763942404}{15} a - \frac{5518084}{15} \) |
\( \bigl[0\) , \( -i\) , \( 0\) , \( 160 i - 160\) , \( -1156 i + 552\bigr] \) |
${y}^2={x}^{3}-i{x}^{2}+\left(160i-160\right){x}-1156i+552$ |
57600.2-c2 |
57600.2-c |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{14} \cdot 3^{4} \cdot 5^{4} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$0.407361047$ |
$2.241859769$ |
3.652985375 |
\( \frac{1725152}{225} a - \frac{34624}{5} \) |
\( \bigl[0\) , \( -i\) , \( 0\) , \( 10 i - 10\) , \( -16 i + 12\bigr] \) |
${y}^2={x}^{3}-i{x}^{2}+\left(10i-10\right){x}-16i+12$ |
57600.2-c3 |
57600.2-c |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{19} \cdot 3^{8} \cdot 5^{5} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$0.203680523$ |
$1.120929884$ |
3.652985375 |
\( \frac{644956}{5625} a - \frac{37235572}{50625} \) |
\( \bigl[0\) , \( -i\) , \( 0\) , \( -20 i - 20\) , \( -92 i - 40\bigr] \) |
${y}^2={x}^{3}-i{x}^{2}+\left(-20i-20\right){x}-92i-40$ |
57600.2-c4 |
57600.2-c |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{16} \cdot 3^{2} \cdot 5^{5} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.814722094$ |
$2.241859769$ |
3.652985375 |
\( -\frac{4842112}{1875} a - \frac{1071616}{1875} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -10 i - 1\) , \( 10 i - 5\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+\left(-10i-1\right){x}+10i-5$ |
57600.2-d1 |
57600.2-d |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{8} \cdot 5^{2} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.379327376$ |
$2.563932044$ |
3.890278468 |
\( \frac{85184}{405} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( 4\) , \( -6\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+4{x}-6$ |
57600.2-d2 |
57600.2-d |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{18} \cdot 3^{2} \cdot 5^{8} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.379327376$ |
$1.281966022$ |
3.890278468 |
\( \frac{14172488}{1875} \) |
\( \bigl[0\) , \( i\) , \( 0\) , \( 40\) , \( 100 i\bigr] \) |
${y}^2={x}^{3}+i{x}^{2}+40{x}+100i$ |
57600.2-d3 |
57600.2-d |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{4} \cdot 5^{4} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$0.758654753$ |
$2.563932044$ |
3.890278468 |
\( \frac{1906624}{225} \) |
\( \bigl[0\) , \( i\) , \( 0\) , \( 10\) , \( -8 i\bigr] \) |
${y}^2={x}^{3}+i{x}^{2}+10{x}-8i$ |
57600.2-d4 |
57600.2-d |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{18} \cdot 3^{2} \cdot 5^{2} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1.517309507$ |
$1.281966022$ |
3.890278468 |
\( \frac{890277128}{15} \) |
\( \bigl[0\) , \( i\) , \( 0\) , \( 160\) , \( -728 i\bigr] \) |
${y}^2={x}^{3}+i{x}^{2}+160{x}-728i$ |
57600.2-e1 |
57600.2-e |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{2} \cdot 5^{3} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1.758262373$ |
$2.078613312$ |
3.654747576 |
\( -\frac{283391872}{75} a - \frac{203846336}{75} \) |
\( \bigl[0\) , \( -i\) , \( 0\) , \( -40 i + 20\) , \( -16 i + 102\bigr] \) |
${y}^2={x}^{3}-i{x}^{2}+\left(-40i+20\right){x}-16i+102$ |
57600.2-e2 |
57600.2-e |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{21} \cdot 3^{4} \cdot 5^{9} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.879131186$ |
$0.519653328$ |
3.654747576 |
\( \frac{558896178746}{3515625} a - \frac{1584549852326}{1171875} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -200 i + 574\) , \( 4986 i + 2972\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+\left(-200i+574\right){x}+4986i+2972$ |
57600.2-e3 |
57600.2-e |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{21} \cdot 3^{16} \cdot 5^{3} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{6} \) |
$0.219782796$ |
$0.519653328$ |
3.654747576 |
\( -\frac{1807321118}{54675} a - \frac{4618181918}{164025} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -320 i + 134\) , \( 410 i - 2420\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+\left(-320i+134\right){x}+410i-2420$ |
57600.2-e4 |
57600.2-e |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{18} \cdot 3^{8} \cdot 5^{6} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$0.439565593$ |
$1.039306656$ |
3.654747576 |
\( \frac{16797928}{16875} a + \frac{40820288}{50625} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -20 i + 34\) , \( 90 i + 20\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+\left(-20i+34\right){x}+90i+20$ |
57600.2-e5 |
57600.2-e |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{4} \cdot 5^{6} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$0.879131186$ |
$2.078613312$ |
3.654747576 |
\( -\frac{10322816}{5625} a + \frac{3312704}{1875} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( 10 i - 6\) , \( 16 i + 2\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+\left(10i-6\right){x}+16i+2$ |
57600.2-e6 |
57600.2-e |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{18} \cdot 3^{2} \cdot 5^{9} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1.758262373$ |
$1.039306656$ |
3.654747576 |
\( \frac{27696914008}{1171875} a + \frac{4499410544}{1171875} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( 40 i - 66\) , \( -170 i + 164\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+\left(40i-66\right){x}-170i+164$ |
57600.2-f1 |
57600.2-f |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{4} \cdot 5^{8} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$1.091813131$ |
$1.662808929$ |
3.630953250 |
\( \frac{85184}{5625} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( 4\) , \( -30\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+4{x}-30$ |
57600.2-f2 |
57600.2-f |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{18} \cdot 3^{16} \cdot 5^{2} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$0.272953282$ |
$0.831404464$ |
3.630953250 |
\( \frac{111980168}{32805} \) |
\( \bigl[0\) , \( -i\) , \( 0\) , \( 80\) , \( 168 i\bigr] \) |
${y}^2={x}^{3}-i{x}^{2}+80{x}+168i$ |
57600.2-f3 |
57600.2-f |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{8} \cdot 5^{4} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$0.545906565$ |
$1.662808929$ |
3.630953250 |
\( \frac{48228544}{2025} \) |
\( \bigl[0\) , \( -i\) , \( 0\) , \( 30\) , \( -72 i\bigr] \) |
${y}^2={x}^{3}-i{x}^{2}+30{x}-72i$ |
57600.2-f4 |
57600.2-f |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{18} \cdot 3^{2} \cdot 5^{10} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.545906565$ |
$0.831404464$ |
3.630953250 |
\( -\frac{66796874848}{1171875} a + \frac{22632570888}{390625} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( 120 i + 94\) , \( 114 i - 732\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+\left(120i+94\right){x}+114i-732$ |
57600.2-f5 |
57600.2-f |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{18} \cdot 3^{2} \cdot 5^{10} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.545906565$ |
$0.831404464$ |
3.630953250 |
\( \frac{66796874848}{1171875} a + \frac{22632570888}{390625} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -120 i + 94\) , \( -114 i - 732\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+\left(-120i+94\right){x}-114i-732$ |
57600.2-f6 |
57600.2-f |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{18} \cdot 3^{4} \cdot 5^{2} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1.091813131$ |
$0.831404464$ |
3.630953250 |
\( \frac{23937672968}{45} \) |
\( \bigl[0\) , \( -i\) , \( 0\) , \( 480\) , \( -4212 i\bigr] \) |
${y}^2={x}^{3}-i{x}^{2}+480{x}-4212i$ |
57600.2-g1 |
57600.2-g |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{24} \cdot 3^{2} \cdot 5^{20} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$4$ |
\( 2^{4} \) |
$1$ |
$0.139731357$ |
2.235701712 |
\( -\frac{117751185817608007}{457763671875} a - \frac{2360548126387992}{152587890625} \) |
\( \bigl[0\) , \( i\) , \( 0\) , \( 1680 i - 6320\) , \( -80084 i + 187488\bigr] \) |
${y}^2={x}^{3}+i{x}^{2}+\left(1680i-6320\right){x}-80084i+187488$ |
57600.2-g2 |
57600.2-g |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{24} \cdot 3^{2} \cdot 5^{20} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$4$ |
\( 2^{4} \) |
$1$ |
$0.139731357$ |
2.235701712 |
\( \frac{117751185817608007}{457763671875} a - \frac{2360548126387992}{152587890625} \) |
\( \bigl[0\) , \( i\) , \( 0\) , \( -1680 i - 6320\) , \( -80084 i - 187488\bigr] \) |
${y}^2={x}^{3}+i{x}^{2}+\left(-1680i-6320\right){x}-80084i-187488$ |
57600.2-g3 |
57600.2-g |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{24} \cdot 3^{32} \cdot 5^{2} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{6} \) |
$1$ |
$0.139731357$ |
2.235701712 |
\( -\frac{147281603041}{215233605} \) |
\( \bigl[0\) , \( i\) , \( 0\) , \( 1760\) , \( -52788 i\bigr] \) |
${y}^2={x}^{3}+i{x}^{2}+1760{x}-52788i$ |
57600.2-g4 |
57600.2-g |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{24} \cdot 3^{2} \cdot 5^{2} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$2.235701712$ |
2.235701712 |
\( -\frac{1}{15} \) |
\( \bigl[0\) , \( i\) , \( 0\) , \( 0\) , \( 12 i\bigr] \) |
${y}^2={x}^{3}+i{x}^{2}+12i$ |
57600.2-g5 |
57600.2-g |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{24} \cdot 3^{4} \cdot 5^{16} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$4$ |
\( 2^{5} \) |
$1$ |
$0.279462714$ |
2.235701712 |
\( \frac{4733169839}{3515625} \) |
\( \bigl[0\) , \( i\) , \( 0\) , \( -560\) , \( -2900 i\bigr] \) |
${y}^2={x}^{3}+i{x}^{2}-560{x}-2900i$ |
57600.2-g6 |
57600.2-g |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{24} \cdot 3^{8} \cdot 5^{8} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$1$ |
$0.558925428$ |
2.235701712 |
\( \frac{111284641}{50625} \) |
\( \bigl[0\) , \( i\) , \( 0\) , \( 160\) , \( -308 i\bigr] \) |
${y}^2={x}^{3}+i{x}^{2}+160{x}-308i$ |
57600.2-g7 |
57600.2-g |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{24} \cdot 3^{4} \cdot 5^{4} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$1$ |
$1.117850856$ |
2.235701712 |
\( \frac{13997521}{225} \) |
\( \bigl[0\) , \( i\) , \( 0\) , \( 80\) , \( 300 i\bigr] \) |
${y}^2={x}^{3}+i{x}^{2}+80{x}+300i$ |
57600.2-g8 |
57600.2-g |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{24} \cdot 3^{16} \cdot 5^{4} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{7} \) |
$1$ |
$0.279462714$ |
2.235701712 |
\( \frac{272223782641}{164025} \) |
\( \bigl[0\) , \( i\) , \( 0\) , \( 2160\) , \( -37908 i\bigr] \) |
${y}^2={x}^{3}+i{x}^{2}+2160{x}-37908i$ |
57600.2-g9 |
57600.2-g |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{24} \cdot 3^{2} \cdot 5^{2} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$4$ |
\( 2^{2} \) |
$1$ |
$0.558925428$ |
2.235701712 |
\( \frac{56667352321}{15} \) |
\( \bigl[0\) , \( i\) , \( 0\) , \( 1280\) , \( 18060 i\bigr] \) |
${y}^2={x}^{3}+i{x}^{2}+1280{x}+18060i$ |
57600.2-g10 |
57600.2-g |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{24} \cdot 3^{8} \cdot 5^{2} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$4$ |
\( 2^{4} \) |
$1$ |
$0.139731357$ |
2.235701712 |
\( \frac{1114544804970241}{405} \) |
\( \bigl[0\) , \( i\) , \( 0\) , \( 34560\) , \( -2461428 i\bigr] \) |
${y}^2={x}^{3}+i{x}^{2}+34560{x}-2461428i$ |
57600.2-h1 |
57600.2-h |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{19} \cdot 3^{2} \cdot 5^{2} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$4$ |
\( 2 \) |
$0.814722094$ |
$1.120929884$ |
3.652985375 |
\( \frac{1763942404}{15} a - \frac{5518084}{15} \) |
\( \bigl[0\) , \( -i\) , \( 0\) , \( -160 i - 160\) , \( -1156 i - 552\bigr] \) |
${y}^2={x}^{3}-i{x}^{2}+\left(-160i-160\right){x}-1156i-552$ |
57600.2-h2 |
57600.2-h |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{14} \cdot 3^{4} \cdot 5^{4} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$0.407361047$ |
$2.241859769$ |
3.652985375 |
\( -\frac{1725152}{225} a - \frac{34624}{5} \) |
\( \bigl[0\) , \( -i\) , \( 0\) , \( -10 i - 10\) , \( -16 i - 12\bigr] \) |
${y}^2={x}^{3}-i{x}^{2}+\left(-10i-10\right){x}-16i-12$ |
57600.2-h3 |
57600.2-h |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{19} \cdot 3^{8} \cdot 5^{5} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$0.203680523$ |
$1.120929884$ |
3.652985375 |
\( -\frac{644956}{5625} a - \frac{37235572}{50625} \) |
\( \bigl[0\) , \( -i\) , \( 0\) , \( 20 i - 20\) , \( -92 i + 40\bigr] \) |
${y}^2={x}^{3}-i{x}^{2}+\left(20i-20\right){x}-92i+40$ |
57600.2-h4 |
57600.2-h |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{16} \cdot 3^{2} \cdot 5^{5} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.814722094$ |
$2.241859769$ |
3.652985375 |
\( \frac{4842112}{1875} a - \frac{1071616}{1875} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( 10 i - 1\) , \( -10 i - 5\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+\left(10i-1\right){x}-10i-5$ |
57600.2-i1 |
57600.2-i |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{21} \cdot 3^{2} \cdot 5^{5} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1.058204453$ |
$0.966754276$ |
4.092094726 |
\( \frac{6481136818}{1875} a - \frac{863170542}{625} \) |
\( \bigl[0\) , \( i - 1\) , \( 0\) , \( 190 i - 65\) , \( -1139 i - 359\bigr] \) |
${y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(190i-65\right){x}-1139i-359$ |
57600.2-i2 |
57600.2-i |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{2} \cdot 5^{2} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1.058204453$ |
$3.867017107$ |
4.092094726 |
\( \frac{85888}{15} a - 13632 \) |
\( \bigl[0\) , \( i - 1\) , \( 0\) , \( -5\) , \( -i - 3\bigr] \) |
${y}^2={x}^{3}+\left(i-1\right){x}^{2}-5{x}-i-3$ |
57600.2-i3 |
57600.2-i |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{18} \cdot 3^{4} \cdot 5^{4} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$0.529102226$ |
$1.933508553$ |
4.092094726 |
\( -\frac{7592}{5} a - \frac{89344}{225} \) |
\( \bigl[0\) , \( i - 1\) , \( 0\) , \( 10 i - 5\) , \( -23 i - 11\bigr] \) |
${y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(10i-5\right){x}-23i-11$ |
57600.2-i4 |
57600.2-i |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
57600.2 |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{21} \cdot 3^{8} \cdot 5^{5} \) |
$2.76869$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$0.264551113$ |
$0.966754276$ |
4.092094726 |
\( \frac{16386026}{5625} a - \frac{14984162}{50625} \) |
\( \bigl[0\) , \( i - 1\) , \( 0\) , \( -10 i + 55\) , \( -155 i - 15\bigr] \) |
${y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(-10i+55\right){x}-155i-15$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.