Learn more

Refine search


Results (1-50 of 118 matches)

Next   Download to        
Label Class Base field Conductor norm Rank Torsion CM Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
57600.2-a1 57600.2-a \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $2$ $\Z/2\Z$ $0.871666361$ $0.382893755$ 5.340089699 \( -\frac{27995042}{1171875} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 80\) , \( -2400 i\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+80{x}-2400i$
57600.2-a2 57600.2-a \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $2$ $\Z/2\Z$ $0.217916590$ $0.765787510$ 5.340089699 \( \frac{54607676}{32805} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( -80\) , \( 80 i\bigr] \) ${y}^2={x}^{3}-i{x}^{2}-80{x}+80i$
57600.2-a3 57600.2-a \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $0.217916590$ $1.531575020$ 5.340089699 \( \frac{3631696}{2025} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 20\) , \( 0\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+20{x}$
57600.2-a4 57600.2-a \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $0.871666361$ $0.765787510$ 5.340089699 \( \frac{868327204}{5625} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 200\) , \( -1152 i\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+200{x}-1152i$
57600.2-a5 57600.2-a \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $2$ $\Z/2\Z$ $0.871666361$ $3.063150040$ 5.340089699 \( \frac{24918016}{45} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 15\) , \( 18 i\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+15{x}+18i$
57600.2-a6 57600.2-a \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $2$ $\Z/2\Z$ $0.871666361$ $0.382893755$ 5.340089699 \( \frac{1770025017602}{75} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 3200\) , \( -70752 i\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+3200{x}-70752i$
57600.2-b1 57600.2-b \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $1.758262373$ $2.078613312$ 3.654747576 \( \frac{283391872}{75} a - \frac{203846336}{75} \) \( \bigl[0\) , \( i\) , \( 0\) , \( 40 i + 20\) , \( 16 i + 102\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+\left(40i+20\right){x}+16i+102$
57600.2-b2 57600.2-b \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $0.879131186$ $0.519653328$ 3.654747576 \( -\frac{558896178746}{3515625} a - \frac{1584549852326}{1171875} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 200 i + 574\) , \( 4986 i - 2972\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(200i+574\right){x}+4986i-2972$
57600.2-b3 57600.2-b \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $0.219782796$ $0.519653328$ 3.654747576 \( \frac{1807321118}{54675} a - \frac{4618181918}{164025} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 320 i + 134\) , \( 410 i + 2420\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(320i+134\right){x}+410i+2420$
57600.2-b4 57600.2-b \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.439565593$ $1.039306656$ 3.654747576 \( -\frac{16797928}{16875} a + \frac{40820288}{50625} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 20 i + 34\) , \( 90 i - 20\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(20i+34\right){x}+90i-20$
57600.2-b5 57600.2-b \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.879131186$ $2.078613312$ 3.654747576 \( \frac{10322816}{5625} a + \frac{3312704}{1875} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -10 i - 6\) , \( 16 i - 2\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-10i-6\right){x}+16i-2$
57600.2-b6 57600.2-b \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $1.758262373$ $1.039306656$ 3.654747576 \( -\frac{27696914008}{1171875} a + \frac{4499410544}{1171875} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -40 i - 66\) , \( -170 i - 164\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-40i-66\right){x}-170i-164$
57600.2-c1 57600.2-c \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $0.814722094$ $1.120929884$ 3.652985375 \( -\frac{1763942404}{15} a - \frac{5518084}{15} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 160 i - 160\) , \( -1156 i + 552\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+\left(160i-160\right){x}-1156i+552$
57600.2-c2 57600.2-c \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.407361047$ $2.241859769$ 3.652985375 \( \frac{1725152}{225} a - \frac{34624}{5} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 10 i - 10\) , \( -16 i + 12\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+\left(10i-10\right){x}-16i+12$
57600.2-c3 57600.2-c \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $0.203680523$ $1.120929884$ 3.652985375 \( \frac{644956}{5625} a - \frac{37235572}{50625} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( -20 i - 20\) , \( -92 i - 40\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+\left(-20i-20\right){x}-92i-40$
57600.2-c4 57600.2-c \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $0.814722094$ $2.241859769$ 3.652985375 \( -\frac{4842112}{1875} a - \frac{1071616}{1875} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -10 i - 1\) , \( 10 i - 5\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(-10i-1\right){x}+10i-5$
57600.2-d1 57600.2-d \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $0.379327376$ $2.563932044$ 3.890278468 \( \frac{85184}{405} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 4\) , \( -6\bigr] \) ${y}^2={x}^{3}+{x}^{2}+4{x}-6$
57600.2-d2 57600.2-d \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $0.379327376$ $1.281966022$ 3.890278468 \( \frac{14172488}{1875} \) \( \bigl[0\) , \( i\) , \( 0\) , \( 40\) , \( 100 i\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+40{x}+100i$
57600.2-d3 57600.2-d \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.758654753$ $2.563932044$ 3.890278468 \( \frac{1906624}{225} \) \( \bigl[0\) , \( i\) , \( 0\) , \( 10\) , \( -8 i\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+10{x}-8i$
57600.2-d4 57600.2-d \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $1.517309507$ $1.281966022$ 3.890278468 \( \frac{890277128}{15} \) \( \bigl[0\) , \( i\) , \( 0\) , \( 160\) , \( -728 i\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+160{x}-728i$
57600.2-e1 57600.2-e \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $1.758262373$ $2.078613312$ 3.654747576 \( -\frac{283391872}{75} a - \frac{203846336}{75} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( -40 i + 20\) , \( -16 i + 102\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+\left(-40i+20\right){x}-16i+102$
57600.2-e2 57600.2-e \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $0.879131186$ $0.519653328$ 3.654747576 \( \frac{558896178746}{3515625} a - \frac{1584549852326}{1171875} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -200 i + 574\) , \( 4986 i + 2972\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(-200i+574\right){x}+4986i+2972$
57600.2-e3 57600.2-e \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $0.219782796$ $0.519653328$ 3.654747576 \( -\frac{1807321118}{54675} a - \frac{4618181918}{164025} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -320 i + 134\) , \( 410 i - 2420\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(-320i+134\right){x}+410i-2420$
57600.2-e4 57600.2-e \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.439565593$ $1.039306656$ 3.654747576 \( \frac{16797928}{16875} a + \frac{40820288}{50625} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -20 i + 34\) , \( 90 i + 20\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(-20i+34\right){x}+90i+20$
57600.2-e5 57600.2-e \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.879131186$ $2.078613312$ 3.654747576 \( -\frac{10322816}{5625} a + \frac{3312704}{1875} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 10 i - 6\) , \( 16 i + 2\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(10i-6\right){x}+16i+2$
57600.2-e6 57600.2-e \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $1.758262373$ $1.039306656$ 3.654747576 \( \frac{27696914008}{1171875} a + \frac{4499410544}{1171875} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 40 i - 66\) , \( -170 i + 164\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(40i-66\right){x}-170i+164$
57600.2-f1 57600.2-f \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.091813131$ $1.662808929$ 3.630953250 \( \frac{85184}{5625} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 4\) , \( -30\bigr] \) ${y}^2={x}^{3}-{x}^{2}+4{x}-30$
57600.2-f2 57600.2-f \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $0.272953282$ $0.831404464$ 3.630953250 \( \frac{111980168}{32805} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 80\) , \( 168 i\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+80{x}+168i$
57600.2-f3 57600.2-f \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.545906565$ $1.662808929$ 3.630953250 \( \frac{48228544}{2025} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 30\) , \( -72 i\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+30{x}-72i$
57600.2-f4 57600.2-f \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $0.545906565$ $0.831404464$ 3.630953250 \( -\frac{66796874848}{1171875} a + \frac{22632570888}{390625} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 120 i + 94\) , \( 114 i - 732\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(120i+94\right){x}+114i-732$
57600.2-f5 57600.2-f \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $0.545906565$ $0.831404464$ 3.630953250 \( \frac{66796874848}{1171875} a + \frac{22632570888}{390625} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -120 i + 94\) , \( -114 i - 732\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-120i+94\right){x}-114i-732$
57600.2-f6 57600.2-f \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $1.091813131$ $0.831404464$ 3.630953250 \( \frac{23937672968}{45} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 480\) , \( -4212 i\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+480{x}-4212i$
57600.2-g1 57600.2-g \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $0.139731357$ 2.235701712 \( -\frac{117751185817608007}{457763671875} a - \frac{2360548126387992}{152587890625} \) \( \bigl[0\) , \( i\) , \( 0\) , \( 1680 i - 6320\) , \( -80084 i + 187488\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+\left(1680i-6320\right){x}-80084i+187488$
57600.2-g2 57600.2-g \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $0.139731357$ 2.235701712 \( \frac{117751185817608007}{457763671875} a - \frac{2360548126387992}{152587890625} \) \( \bigl[0\) , \( i\) , \( 0\) , \( -1680 i - 6320\) , \( -80084 i - 187488\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+\left(-1680i-6320\right){x}-80084i-187488$
57600.2-g3 57600.2-g \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $0.139731357$ 2.235701712 \( -\frac{147281603041}{215233605} \) \( \bigl[0\) , \( i\) , \( 0\) , \( 1760\) , \( -52788 i\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+1760{x}-52788i$
57600.2-g4 57600.2-g \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $2.235701712$ 2.235701712 \( -\frac{1}{15} \) \( \bigl[0\) , \( i\) , \( 0\) , \( 0\) , \( 12 i\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+12i$
57600.2-g5 57600.2-g \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $0.279462714$ 2.235701712 \( \frac{4733169839}{3515625} \) \( \bigl[0\) , \( i\) , \( 0\) , \( -560\) , \( -2900 i\bigr] \) ${y}^2={x}^{3}+i{x}^{2}-560{x}-2900i$
57600.2-g6 57600.2-g \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $0.558925428$ 2.235701712 \( \frac{111284641}{50625} \) \( \bigl[0\) , \( i\) , \( 0\) , \( 160\) , \( -308 i\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+160{x}-308i$
57600.2-g7 57600.2-g \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $1.117850856$ 2.235701712 \( \frac{13997521}{225} \) \( \bigl[0\) , \( i\) , \( 0\) , \( 80\) , \( 300 i\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+80{x}+300i$
57600.2-g8 57600.2-g \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $0.279462714$ 2.235701712 \( \frac{272223782641}{164025} \) \( \bigl[0\) , \( i\) , \( 0\) , \( 2160\) , \( -37908 i\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+2160{x}-37908i$
57600.2-g9 57600.2-g \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $0.558925428$ 2.235701712 \( \frac{56667352321}{15} \) \( \bigl[0\) , \( i\) , \( 0\) , \( 1280\) , \( 18060 i\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+1280{x}+18060i$
57600.2-g10 57600.2-g \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $0.139731357$ 2.235701712 \( \frac{1114544804970241}{405} \) \( \bigl[0\) , \( i\) , \( 0\) , \( 34560\) , \( -2461428 i\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+34560{x}-2461428i$
57600.2-h1 57600.2-h \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $0.814722094$ $1.120929884$ 3.652985375 \( \frac{1763942404}{15} a - \frac{5518084}{15} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( -160 i - 160\) , \( -1156 i - 552\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+\left(-160i-160\right){x}-1156i-552$
57600.2-h2 57600.2-h \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.407361047$ $2.241859769$ 3.652985375 \( -\frac{1725152}{225} a - \frac{34624}{5} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( -10 i - 10\) , \( -16 i - 12\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+\left(-10i-10\right){x}-16i-12$
57600.2-h3 57600.2-h \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $0.203680523$ $1.120929884$ 3.652985375 \( -\frac{644956}{5625} a - \frac{37235572}{50625} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 20 i - 20\) , \( -92 i + 40\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+\left(20i-20\right){x}-92i+40$
57600.2-h4 57600.2-h \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $0.814722094$ $2.241859769$ 3.652985375 \( \frac{4842112}{1875} a - \frac{1071616}{1875} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 10 i - 1\) , \( -10 i - 5\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(10i-1\right){x}-10i-5$
57600.2-i1 57600.2-i \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $1.058204453$ $0.966754276$ 4.092094726 \( \frac{6481136818}{1875} a - \frac{863170542}{625} \) \( \bigl[0\) , \( i - 1\) , \( 0\) , \( 190 i - 65\) , \( -1139 i - 359\bigr] \) ${y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(190i-65\right){x}-1139i-359$
57600.2-i2 57600.2-i \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $1.058204453$ $3.867017107$ 4.092094726 \( \frac{85888}{15} a - 13632 \) \( \bigl[0\) , \( i - 1\) , \( 0\) , \( -5\) , \( -i - 3\bigr] \) ${y}^2={x}^{3}+\left(i-1\right){x}^{2}-5{x}-i-3$
57600.2-i3 57600.2-i \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.529102226$ $1.933508553$ 4.092094726 \( -\frac{7592}{5} a - \frac{89344}{225} \) \( \bigl[0\) , \( i - 1\) , \( 0\) , \( 10 i - 5\) , \( -23 i - 11\bigr] \) ${y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(10i-5\right){x}-23i-11$
57600.2-i4 57600.2-i \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $0.264551113$ $0.966754276$ 4.092094726 \( \frac{16386026}{5625} a - \frac{14984162}{50625} \) \( \bigl[0\) , \( i - 1\) , \( 0\) , \( -10 i + 55\) , \( -155 i - 15\bigr] \) ${y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(-10i+55\right){x}-155i-15$
Next   Download to        

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.